

 Contents

 	 Welcome!

 	 Frequently Asked Questions

 	 DITA
 	 Learning
 	 Resources for learning DITA with Oxygen
 	 Learn DITA Editing with Oxygen with Small Clips
 	 Short Clips - Insert Image References

 	 Short Clips - Insert Links

 	 Short Clips - Reuse Content

 	 DITA Perspectives
 	Overview of DITA

 	Taking Advantage of DITA Element Hierarchy

 	Exchanging DITA Documents

 	 Using DITA to Document a Software Product

 	 Guided DITA Authoring Solution Overview

 	 Maintaining a Healthy DITA Project

 	 DITA Linking Strategies

 	 DITA 1.3 Branch Filtering - Next Generation of Reuse

 	 DITA 1.3 Key Scopes - Next Generation of Reuse

 	 DITA Reuse Strategies
 	 Introduction

 	 Version Control and Reuse

 	 Converting XML content to various output formats

 	 Create larger publications from existing ones

 	 Reuse content for similar products

 	 Reuse fragments of content
 	 Content References

 	 Content Key References

 	 Content Reference Ranges

 	 Content Reuse Tips and Tricks

 	 Pushing Content

 	 Key References (Variables)

 	 DITA 1.3 Contributions to Reuse
 	 Reuse with Key Scopes

 	 Reuse with Branch Filtering

 	 Reuse non-DITA resources

 	 Conclusions

 	 Cross-Book Links

 	 DITA XML vs Markdown Syntax and Capabilities Comparison

 	 Publishing Customizations
 	 Server Side Building and Publishing
 	 Building and Publishing Using a Script

 	 Building, Validating, and Publishing Using GitHub Actions

 	 Creating a Docker Image for the Oxygen Publishing Engine
 	 Running the Publishing Engine Docker Image on AWS

 	 DITA WebHelp Publishing Solution Advantages

 	 PDF
 	 DITA OT PDF Customization - Table with Alternate Row Background Colors

 	 Possibilities to obtain PDF from DITA

 	 DITA PDF publishing - Force page breaks between two block elements

 	 Embedding Diagrams in DITA topics using PlantUML

 	 Embedding Diagrams in DITA Topics Using Mermaid

 	 Presenting DITA Task Steps as Diagrams

 	 Show Consecutive DITA Code Blocks in Separate Tabs

 	 Show DITA Task Steps in Separate Tabs

 	 Converting OpenAPI to DITA XML and Publishing to WebHelp (Experimental)

 	 DITA to Confluence

 	 Generating a list of changes between releases

 	 DITA Publishing Customization Overview

 	 DITA Open Toolkit Frequently Asked Questions (FAQ)

 	 Enhancing DITA Publishing With Plugins

 	 Adding support for embedding LaTeX equations in DITA content

 	 Useful DITA OT Plugins

 	 Creating a simple DITA Open Toolkit plugin to customize published HTML and PDF content

 	 Using Git client-side hooks to run DITA publishing pipelines

 	 Creating Link Graphs From DITA Maps

 	 Publishing DITA Content Using the MKDocs Web Site Generator

 	 Creating PowerPoint Slides from DITA Content

 	 Adding Labels to Topics in the WebHelp Responsive Output

 	 Displaying prolog details (author, creation date, read time)

 	 Dynamically publishing a list with the most recent topics

 	 Dynamically Generating an RSS Feed

 	 Generating Google Structured Data from your DITA tasks

 	 Generating Google Structured Data from your DITA frequently asked questions

 	 Editing Customizations
 	 Startup DITA Project

 	 Customizing the DITA Visual Editing Experience

 	 Customizing the DITA Framework Using a Framework Extension Script

 	 Controlled Attribute Values for your DITA Project
 	 Controlled Attribute Values (Part 2 - Advanced)

 	 Converting Subject Scheme Map Values to a DITAVAL

 	 Converting .xpr Profiling Conditions to Standard DITA Files

 	 Other
 	 Oxygen XML As a Technical Documentation Solution FAQ

 	 DITA For Small Technical Documentation Teams

 	 Using Git For Technical Writing
 	 Advantages of Using Git

 	 Disadvantages of Using Git

 	 Useful Resources

 	 Applications for Working with Git

 	 Typical Editing Session

 	 Validation

 	 Common Workflows
 	 Centralized Workflow

 	 Feature Branches

 	 Branches For All Changes

 	 Release Branches

 	 GitFlow

 	 Propose Changes

 	 Handling Translations

 	 Sharing Common Settings

 	 Publishing Content From Git

 	 Types Of Companies Who Would Benefit From Using the DITA XML Standard

 	 Supporting the DITA OT Project as a Commercial Company

 	 DITA Map Metrics Evolution

 	 Oxygen XML Editor DITA Editing solution strong points.

 	 DITA Oriented Tips And Tricks

 	 DITA Project Enhancements

 	 Translating your DITA Project

 	 DITA Map Validate and Check for Completeness Overview

 	 Schematron Checks to help Technical Writing

 	 Implementing your own Style Guide

 	 Preprocessing DITA-OT Project Files

 	 Re: 10 reasons for moving away from DITA

 	 DITA 2.0 Specification Support Cheat Sheet

 	 Refactoring
 	 Sorting Glossary Lists in a DITA Bookmap

 	 Replacing Direct Image References with Key References in a DITA Project.

 	 Deleting Elements in a Refactoring Operation

 	 Resolving DITA Cross-References in Refactoring Operations

 	 Inserting and Reformatting Content in Refactoring Operations

 	 Surveys
 	 Small Problems with the DITA Standard

 	 DITA Linking Usage Survey

 	 DITA Inheritance Hierarchy

 	 DITA Usage Survey

 	 Creating a Knowledge Base for the Google Dialogflow Chatbot using DITA XML
 content

 	 Using ChatGPT in a DITA XML Project

 	 Oxygen AI Positron Assistant Add-on

 	 Similarities Between Technical Doc Writers and Software Engineers

 	 Migrate
 	 Migrating to a Structured Standards-based Documentation Solution

 	 Migrating Various Document Formats to DITA

 	 How to Migrate from Word to DITA
 	 Migrating MS Word to DITA using the Batch Documents Converter
 	 Preparing Word Document for Migration

 	 Converting the Word Document

 	 Post-processing the DITA Content Converted from Word

 	 Word to DITA Conversion FAQ

 	 Batch converting HTML to XHTML

 	 Migrating Unstructured Adobe FrameMaker Content to DITA

 	 Automation - Using DITA XML Topic Titles to Generate File Names

 	 SDK Development (Plugins, Frameworks)
 	 Customizing Oxygen XML Editor (Overview)

 	 Document Type Extension Sharing

 	 Sharing Schematron Validation Rules

 	 Public hosted Oxygen Plugin and Framework Projects

 	 Sharing New Custom File Templates for a Specific Vocabulary

 	 Composing Author Actions

 	 Implementing a Custom Author Action to Split a Table

 	 Adding a Custom Author Action to the Content Completion Window

 	 How Special Paste works in Oxygen

 	 The Oxygen SDK (Part 1: Plugins)

 	 The Oxygen SDK (Part 2: Frameworks)

 	 Your First Oxygen Add-on

 	 Oxygen Add-ons Overview

 	 Adding CALS-table related functionality to your custom Oxygen framework

 	 Convert Code Templates to External Author Actions

 	 Miscellaneous
 	 Oxygen XML Ecosystem

 	 Add-ons For Technical Documentation

 	 Tips And Tricks

 	 Checking Terminology with Oxygen XML Editor

 	 10 Things I Enjoy About the New Oxygen JSON Editor

 	 Opinions about using Oxygen

 	 A set of rules for providing great tech support

 	 A Short Story of Reuse

 	 Sharing Application Settings

 	 Collaboration for Documenting a Software Product using DITA

 	 Collaboration (Teams working on a common XML project)

 	 Enable massive contributions with oXygen XML Web Author and GitHub

 	 All About Editor Variables

 	 XSLT Training

 	 Log4Shell - Oxygen XML Vulnerability Analysis FAQ

 	 Using Oxygen XML Editor in a Web Browser (Experimental)

 	 Oxygen XML Blog 2022 Retrospective

 	 Contributors

 Welcome!

 Our blog contains various useful articles and tutorials covering various aspects of
 editing, developing, and publishing using Oxygen XML Editor with various XML
 technologies.

 Sometimes (quite often actually) articles originally written for the blog are curated
 by
 our technical writers and end up being part of our official documentation: https://www.oxygenxml.com/doc/ug-editor/.
 However, the blog allows us to deploy various small articles faster, without the need
 to
 wait for documentation updates.

 Follow us!

 You can use an RSS feed reader to follow the blog for new articles: https://blog.oxygenxml.com/rss.xml.

 Or you can register to receive
 emails when new articles are posted.

 History of the Oxygen XML Editor Blog

 The blog was originally hosted by Google Blogs and the first articles on the blog
 appeared around 2007. Since Google Blogs did not allow enough flexibility in
 creating the published content (for example, the inability to create a table of
 contents) the blog was migrated to DITA XML content stored on GitHub and is now
 hosted both on the Oxygen XML Web site and on the Netlify platform: https://oxygenxmlblog.netlify.com/.

 How the Oxygen XML Editor Blog Works

 The entire source code of the Oxygen XML Editor blog is stored in DITA content on
 a public GitHub repository: https://github.com/oxygenxml/blog.

 There is a Gradle build file that uses a special DITA
 Open Toolkit to produce WebHelp Responsive, EPUB and PDF outputs
 from the DITA content. The following features are available in the published output:

 	Color themes can be easily changed with CSS to modify how the output
 looks.

 	Search functionality. Possibility to add index terms.

 	RSS Feed is automatically generated from the entire list of topics.

 	PDF output is automatically generated using Oxygen Chemistry Engine and can
 be customized with CSS.

 	EPUB output is automatically generated using DITA For Publishers
 plugins.

 	Each page has an Edit online link allowing it to be edited in the
 Oxygen XML Web Author.

 	Each page has a comments section build using the Oxygen Feedback platform.

 	Each time content is added to the project there is a configured GitHub action which runs a validation
 report of the DITA content (reporting for example broken links).

 How You can Contribute to the Oxygen XML Editor Blog.

 We want to encourage our end users and collaborators to start creating small
 Oxygen-related articles for our blog. To post your own articles, follow these
 steps:

 	Create your own GitHub account, if you do not already have one.

 	Fork the contents of the Oxygen XML Editor GitHub repository in your own
 					GitHub Repository: https://github.com/oxygenxml/blog. More details about how to fork a repository: https://docs.github.com/en/get-started/quickstart/contributing-to-projects.

 	Make changes to your forked project or to a branch from it.

 	If you have the Oxygen XML Editor application installed, you can
 download our Git add-on that should allow
 you to clone the fork, make changes, and then commit and push them to
 your repository.

 	As an alternative, you can use the Oxygen XML Web Author browser editing
 tool that has its own Git connector: https://www.oxygenxml.com/oxygen-xml-web-author/app/oxygen.html.

 	Please remember to add the name of the author and the created date for
 the topic in the DITA topic prolog section
 like:
 <prolog>
 <author>Radu Coravu</author>
 <critdates>
 <created date="2020-01-14"/>
 </critdates>
</prolog>
This
 prolog section will be used to add in the published HTML output the
 author information after the topic title.

 						
 	Each commit message must include a sign off.

 	After all changes have been made to your fork of the project, you can create a
 pull request to the Oxygen XML Editor original GitHub project.

 	There is a GitHub action implemented in the
 project which will automatically run DITA validation on the entire project
 branch and will report on the pull request if the validation is successful.

 	We will review your changes and if your pull requests is accepted, the blog web
 site will be automatically updated with the new changes.

 Technologies Used to Store, Build and Publish the Oxygen XML Blog

 	The blog content is stored on a public GitHub repository.

 	GitHub's issues list is used to organize the work
 and add new improvement ideas.

 	Offline editing the blog is done using Oxygen XML Editor with its Git add-on
 installed.

 	Online editing is done using Oxygen Web Author.

 	A Gradle build file is used to download
 a custom DITA Open Toolkit which contains the Oxygen WebHelp Responsive and PDF
 CSS plugins pre-installed, then run the publishing and validation stages.

 	The DITA
 Open Toolkit is used along with custom plugins to publish the DITA
 content.

 	Oxygen WebHelp is used to
 publish the DITA content to HTML output. Publishing templates are used
 to customize the published output.

 	The Oxygen Feedback system is used
 for adding feedback forms to each page.

 	Oxygen PDF Chemistry is used
 to produce PDF for the publishing platform.

 	The DITA For Publishers plugins are used to
 produce the EPUB output.

 	 Oxygen DITA Validate and Check for Completeness is
 run as a GitHub action with the help of a special scripting license.

 	Netlify is used to connect to the repository, run Gradle and publish
 the WebSite.

 Frequently Asked Questions

 How do I register to receive notifications for new blog posts?

 Each blog HTML page has at the end a form in which you can fill your email address
 if
 you want to be notified when new posts are made.

 Can I contribute articles to the Oxygen XML Blog?

 Yes, the procedure is listed here: How You can Contribute to the Oxygen XML Editor Blog..

 How do I learn DITA XML with Oxygen?

 Read our Resources for learning DITA with Oxygen blog post.

 How do I convert various output formats to DITA XML?

 Read our Migrating Various Document Formats to DITA and How to Migrate from Word to DITA blog posts.

 Are there any productivity tips and tricks?

 Our Tips And Tricks and DITA Oriented Tips And Tricks posts contains lots of interesting
 productivity tips and tricks.

 DITA

 Learning

 There are lots of resources available for learning to work with the DITA XML standard
 both online and in on Oxygen XML Editor user's manual and blog.

 	Resources for learning DITA with Oxygen

 	Using DITA to Document a Software Product

 	Guided DITA Authoring Solution Overview

 	Maintaining a Healthy DITA Project

 	DITA Linking Strategies

 	DITA 1.3 Branch Filtering - Next Generation of Reuse

 	DITA 1.3 Key Scopes - Next Generation of Reuse

 	DITA Reuse Strategies

 	Cross-Book Links

 	DITA XML vs Markdown Syntax and Capabilities Comparison

 Resources for learning DITA with Oxygen

 From time to time we get requests from beginners or from users migrating from other
 tools who
 want to start using Oxygen with DITA and they need to know a set of useful resources.

 Resources for editing DITA with Oxygen:

 We have a getting started section in our user's manual: https://www.oxygenxml.com/doc/ug-editor/topics/eppo-first-dita-topic.html and a larger section on DITA authoring: https://www.oxygenxml.com/doc/ug-editor/topics/author-dita.html.

 We have a list of videos, some of them DITA-related here: https://www.oxygenxml.com/videos.html and a series
 of past webinar recordings about editing DITA with Oxygen.

 	Getting Started with Oxygen and DITA

 	https://www.oxygenxml.com/events/2020/webinar_getting_started_with_dita_using_oxygen_xml_editor.html

 	Basic DITA Profiling and Reuse

 	https://www.oxygenxml.com/events/2020/webinar_working_with_dita_in_oxygen.html

 	Advanced DITA Profiling and Reuse

 	https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_advanced_profiling_and_reuse_strategies.html

 	Working with DITA in Oxygen - Customizing the Editing Experience

 	https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_customizing_the_editing_experience.html

 	Working with DITA in Oxygen - Quick start with the DITA Startup Project

 	https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_startup_project.html

 	Working with DITA in Oxygen - Migrating to DITA and Refactoring

 	https://www.oxygenxml.com/events/2021/webinar_working_with_dita_in_oxygen_migrating_to_dita_and_refactoring.html

 All these webinars above are also listed here: https://www.oxygenxml.com/working_with_dita_in_oxygen.html.

 Resources for learning DITA:

 If you want to start learning about DITA in general there is a web site called Learning
 DITA.

 DITA Introduction articles by Stefan Jung.

 The free Oxygen Live Tutorials add-on contains various small
 tutorials for learning DITA.

 The DITA 1.3 standard specification can be found here: https://www.oxygenxml.com/dita/1.3/specs/#introduction/dita-release-overview.html.

 There are also a number of good books like DITA For Practitioners and the DITA
 Style Guide.

 Resources for customizing the DITA output formats

 Usually customizing the XHTML based outputs means creating your custom CSS selectors.
 If
 you generate WebHelp output using Oxygen, we have a section explaining basic WebHelp customizations.

 For PDF-based outputs we recommend, support and maintain our CSS-based PDF publishing which is free to use from Oxygen XML Editor. There are also a number of different choices to obtain PDF from DITA:
 Possibilities to obtain PDF from DITA.

 We have a series of past webinar recordings about customizing the published output:

 	Transforming DITA documents to PDF using CSS

 	Part 1 – Page Definitions, Cover
 Page and PDF Metadata

 	Part 2 – Book design, Pagination,
 Page Layout and Bookmarks

 	Part 3 – Advanced Fonts
 Usage

 	Part 4 – Advanced CSS
 Rules

 	Techniques for Customizing the WebHelp
 Responsive Output

 	Using Oxygen Styles Basket to Create CSS
 Customization from Scratch

 And if you are interested in server side building and publishing this topic
 might be useful:Server Side Building and Publishing.

 Courses for learning DITA with Oxygen XML Editor

 	Ryffine: https://www.ryffine.com/.

 	Udemy: https://www.udemy.com/course/technical-writing-how-to-write-using-dita-xml/.

 	Hyperwrite: http://www.hyperwrite.com/Training/crsoxygenintro.aspx.

 	Basic principles and theory of DITA, 10 hour recorded training course by Tony
 Self: https://firehead-training.net/course/dita-concepts.

 	Mekon: http://mekon.com/news/dita-authoring-oxygen-author/

 	French course by Tireme: http://dita.tireme.fr/#definition/m2_session_adapter_dita.html

 	"Writing DITA content" - course with a two day duration by FlowTime:
 https://www.flowtime.be/en/writing-dita-xml-content-schrijven.

 DITA Trivia

 There are a number of blogs on which you can read various DITA-related articles:

 	Oxygen XML Blog: Welcome!.

 	Magda Caloian's Think DITA blog: http://think-dita.com/.

 	Scriptorium Blog: http://www.scriptorium.com/blog/.

 	Eliot Kimber's Blog: http://drmacros-xml-rants.blogspot.ro/.

 	A larger selection of technical writing and DITA articles:http://idratherbewriting.com

 	List of learning DITA blog posts from Mekon: http://mekon.com/bitesize-dita/

 	DITA XML Benefits: https://technicallywewrite.com/2023/09/11/aboutdita

 	Working with DITA projects in Oxygen: https://technicallywewrite.com/2023/09/14/aboutoxygen

 Community

 The DITA
 Users List is probably the first place where you can register and ask for help with
 DITA-related issues. A bunch of other community support forums for the publishing
 engine are
 also listed here: https://www.dita-ot.org/support.

 There is also a DITA Awareness
 Group on Linked In.

 	DITA Perspectives

 Learn DITA Editing with Oxygen with Small Clips

 Short Clips - Insert Image References

 Learn all ways to insert image references in DITA topics using small clips.

 	Use Toolbar Action to Insert a Figure with an Image Reference

 	Drag and Drop to Insert an Image Reference

 	Copy/Paste to Insert an Image Reference

 	Configure DITA Reusable Components/Media Tab Working Sets and Insert an Image Reference

 Use Toolbar Action to Insert a Figure with an Image Reference

 Drag and Drop to Insert an Image Reference

 Copy/Paste to Insert an Image Reference

 Configure DITA Reusable Components/Media Tab Working Sets and Insert an Image
 Reference

 Short Clips - Insert Links

 Learn all ways to insert links in DITA topics using small clips.

 	Use Toolbar Action to Insert a Cross Reference to Another Topic

 	Use Toolbar Action to Insert a Cross Reference to a Table

 	Drag and Drop to Insert a Cross Reference

 	Copy/Paste to Insert a Cross Reference

 	Copy Paste to Insert a Cross Reference To a Table

 	Use Toolbar Action to Insert a Related Link to Another Topic

 	Use Toolbar Action to Insert a Link to a Web Site

 	Use Toolbar Action to Insert a Link to a PDF

 Use Toolbar Action to Insert a Cross Reference to Another Topic

 Use Toolbar Action to Insert a Cross Reference to a Table

 Drag and Drop to Insert a Cross Reference

 Copy/Paste to Insert a Cross Reference

 Copy Paste to Insert a Cross Reference To a Table

 Use Toolbar Action to Insert a Related Link to Another Topic

 Use Toolbar Action to Insert a Link to a Web Site

 Use Toolbar Action to Insert a Link to a PDF

 Short Clips - Reuse Content

 Define a Key for a Product Name and Use It

 Use an Already Defined Key for a Product Name Using The Toolbar Action

 Add a Content Reference to a Reusable Note Using the Toolbar Actions

 Add a Content Reference Using Copy/Special Paste Operations

 Add a Content Reference Using the DITA Reusable Components View

 DITA Perspectives

 DITA is not defined as a flat list of elements, but each element is either a base
 element
 or it derives as a specialized version of another element. This hierarchy should
 actually decrease the cognitive complexity of a vocabulary because it allows you to
 find
 an element faster than working with a flat list.

 In this article, I want to show the hierarchy of elements in DITA and then explore
 how
 you can take advantage of this in understanding the DITA architecture, learning DITA,
 document authoring, etc.

 All the scripts I used to generate these diagrams can be found in the DITA
 Perspectives Github Project.

 	
 Overview of DITA

 	

 		
 		
 		
 		
 		
 	

 	
 DITA Shells

 	

 		
 DITA 1.3 defines multiple types of documents. Along with the generic topic and map,
 there are
 			also many specialized topics types and maps types. Each type of document is defined
 by a
 			schema that is marked as a shell schema, a schema that should be an
 			entry point, the one that should be referred from an XML document. All the defined
 			shells are presented in the following diagram, grouped by the folder they are defined
 			in:

 		[image: ../../images/ShellModulesByGroup.svg]
 	

 	
 DITA Modules

 	

 		
 The DITA specification mentions that each element has a class attribute
 			that encodes information about the type of that element, for
 			example:
 <step class="- topic/li task/step">

 			and this information includes:

 A sequence of one or more tokens of the form
 			"modulename/typename", with each token separated by one or more spaces,
 			where modulename is the short name of the vocabulary module and
 			typename is the element type name. Tokens are ordered left to right
 			from most general to most specialized.

 		
 By analyzing all the class values from all the elements defined in the schemas, I
 can identify
 			the base modules (top level ones). In this case, topic and a hierarchy
 			implied by how the elements are defined by this relation from more general to more
 			specialized modules, thus identifying how modules are specialized from others (in
 this
 			example, task is specialized from topic).

 		
 The base DITA modules:

 		
 [image: ../../images/BaseModules.svg]

 		
 The modules specialization hierarchy:

 		
 [image: ../../images/ModulesHierarchy.svg]

 	

 	
 DITA Elements

 	

 		
 The total number of DITA elements defined in the schemas and how they are split into
 base
 			elements, specialized element, and a highlight of the duplicate elements, while
 having
 			the same name but being defined on a different module can be observed here:

 		
 [image: ../../images/BaseDITAElements.svg]

 		

 Elements Split by Map and Topic Base

 			
 			
 [image: ../../images/BaseDITATopicAndMapElements.svg]

 		

 		

 Topic Elements

 			
 			
 The element information is projected on the topic base module:

 			
 [image: ../../images/BaseDITATopicElements.svg]

 		

 		

 Map Elements

 			
 			
 The element information is projected on the map base module:

 			
 [image: ../../images/BaseDITAMapElements.svg]

 		

 	

 bookmap

 Defined in ../data/rng/bookmap/rng/bookmapMod.rng

 [image: ../../images/bookmap-nodes.svg]

 learningSummary

 Defined in ../data/rng/learning/rng/learningSummaryMod.rng

 [image: ../../images/learningSummary-nodes.svg]

 learningPlan

 Defined in ../data/rng/learning/rng/learningPlanMod.rng

 [image: ../../images/learningPlan-nodes.svg]

 learningOverview

 Defined in ../data/rng/learning/rng/learningOverviewMod.rng

 [image: ../../images/learningOverview-nodes.svg]

 learningContent

 Defined in ../data/rng/learning/rng/learningContentMod.rng

 [image: ../../images/learningContent-nodes.svg]

 learningObjectMap

 Defined in ../data/rng/learning/rng/learningObjectMapMod.rng

 [image: ../../images/learningObjectMap-nodes.svg]

 learningBase

 Defined in ../data/rng/learning/rng/learningBaseMod.rng

 [image: ../../images/learningBase-nodes.svg]

 learningGroupMap

 Defined in ../data/rng/learning/rng/learningGroupMapMod.rng

 [image: ../../images/learningGroupMap-nodes.svg]

 learningAssessment

 Defined in ../data/rng/learning/rng/learningAssessmentMod.rng

 [image: ../../images/learningAssessment-nodes.svg]

 troubleshooting

 Defined in ../data/rng/technicalContent/rng/troubleshootingMod.rng

 [image: ../../images/troubleshooting-nodes.svg]

 reference

 Defined in ../data/rng/technicalContent/rng/referenceMod.rng

 [image: ../../images/reference-nodes.svg]

 task

 Defined in ../data/rng/technicalContent/rng/taskMod.rng

 [image: ../../images/task-nodes.svg]

 glossentry

 Defined in ../data/rng/technicalContent/rng/glossentryMod.rng

 [image: ../../images/glossentry-nodes.svg]

 glossgroup

 Defined in ../data/rng/technicalContent/rng/glossgroupMod.rng

 [image: ../../images/glossgroup-nodes.svg]

 concept

 Defined in ../data/rng/technicalContent/rng/conceptMod.rng

 [image: ../../images/concept-nodes.svg]

 subjectScheme

 Defined in ../data/rng/subjectScheme/rng/subjectSchemeMod.rng

 [image: ../../images/subjectScheme-nodes.svg]

 	
 DITA Domains

 	

 		
 Some DITA elements are defined to be part of a domain that can be added on any DITA
 document
 			type as a pluggable component. A domain defines a number of semantic elements that
 are
 			derived from other elements, providing a specialization of the base elements but
 			reflecting the semantics of a domain, such as programming, software, etc.

 	

 DITA Learning Interaction Base 2 Domain

 [image: ../../images/learningInteractionBase2-d-nodes.svg]

 DITA Learning Map Domain

 [image: ../../images/learningmap-d-nodes.svg]

 DITA Learning Interaction Base Domain

 [image: ../../images/learningInteractionBase-d-nodes.svg]

 DITA Learning Metadata Domain

 [image: ../../images/learningmeta-d-nodes.svg]

 DITA Learning Domain

 [image: ../../images/learning-d-nodes.svg]

 DITA Learning 2 Domain

 [image: ../../images/learning2-d-nodes.svg]

 DITA Abbreviated Form Domain

 [image: ../../images/abbrev-d-nodes.svg]

 DITA Markup Name Mention
 Next v
 Domain

 [image: ../../images/markup-d-nodes.svg]

 DITA MathML Domain

 Added locally

 DITA SVG

 [image: ../../images/svg-d-nodes.svg]

 DITA User ADD Domain

 [image: ../../images/ui-d-nodes.svg]

 DITA Equation Domain

 [image: ../../images/equation-d-nodes.svg]

 DITA Task Requirements Domain

 [image: ../../images/taskreq-d-nodes.svg]

 DITA Programming Domain

 [image: ../../images/pr-d-nodes.svg]

 DITA XML Construct Domain

 [image: ../../images/xml-d-nodes.svg]

 DITA Glossary Reference Domain

 [image: ../../images/glossref-d-nodes.svg]

 DITA Software Domain

 [image: ../../images/sw-d-nodes.svg]

 DITA Release Management Domain

 [image: ../../images/relmgmt-d-nodes.svg]

 DITA XNAL Domain

 [image: ../../images/xnal-d-nodes.svg]

 DITAVAL Reference Domain

 [image: ../../images/ditavalref-d-nodes.svg]

 DITA Delay Resolution Domain

 [image: ../../images/delay-d-nodes.svg]

 DITA Indexing Domain

 [image: ../../images/indexing-d-nodes.svg]

 DITA Hazard Statement Domain

 [image: ../../images/hazard-d-nodes.svg]

 DITA Highlight Domain

 [image: ../../images/hi-d-nodes.svg]

 DITA Map Group Domain

 [image: ../../images/mapgroup-d-nodes.svg]

 DITA Utilities Domain

 [image: ../../images/ut-d-nodes.svg]

 DITA Subject Classification Domain

 [image: ../../images/classify-d-nodes.svg]

 	
 Taking Advantage of DITA Element Hierarchy

 	

 		
 Elements in DITA are defined not as a flat list of elements, but instead as a hierarchy,
 			similar to a type hierarchy, and elements are either base elements or they are
 derived
 			from another element. If we look at the analogy with a type system, the base elements
 			are similar to the primitive types and the other elements are equivalent to derived
 			types.

 		
 This is realized using values specified in the class attribute. These values specify the
 			category and the name of the current element and (if we talk about a derived element)
 			also the name and category of its parent, as well as all the ancestors up to the
 base
 			element.

 		
 For example, the @class value for the <lcPlanTitle>
 			element
 			is:
 class="- topic/fig learningBase/fig learningPlan/lcPlanTitle"
This
 			means that the current element is <lcPlanTitle> from the
 				learningPlan category and this is derived from the
 				<fig> element from the learningBase
 			category, which in turn is defined from the <fig> element from
 			the topic category.

 		
 We can take this information into account in some situations.

 	

 Element Selection During Editing

 To take advantage of the fact that elements in DITA form a hierarchy, one possibility
 is
 to follow this hierarchy when we present the user with the choice of an element to
 insert, so instead of presenting a flat list of choices, we can organize the elements
 according to the hierarchy defined by the @class attribute values and
 thus, if the user selects an unordered list (element) to
 insert (for example), we can further present all the elements specialized from the
 element that are valid in that position in the document.
 Of course, this makes sense if the user is browsing for an element to insert, and
 the
 user already knows the element and types its name, then we can just filter that name
 and
 eventually, if there are elements specializing the one identified by the entered string,
 then we can show them further.

 Another possibility is to present a drop-down for an element that has specialized
 elements, and those are valid at that location, and allow the user to move to a more
 specialized element by selecting it from that drop-down.

 Automatic Markup Detection

 If we first detect the base element and then determine if it is in fact a more
 specialized one, it may help because it reduces the number of choices.

 Soft Generalization

 To visualize how a document will look like when it is generalized but without really
 generalizing it (that is without replacing the elements with more general ones), we
 implemented a CSS rendering to show the XML tags as if the document is generalized.

 For example, an element on which we make the tags visible using CSS static content
 placed
 before and after the element looks like this:

 [image: ../../images/softGeneralization1.png]

 If we generalize on level, showing the first derived element type, then this sample
 <xmlelement> will turn into
 <markupname>:

 [image: ../../images/softGeneralization2.png]

 If we generalize to show the base elements, then many of the tag names will change,
 as
 highlighted in the following screen shot:

 [image: ../../images/softGeneralization3.png]

 Exchanging DITA Documents

 			
 			
 One advantage of using DITA is that we can tag at semantic level. For this to work,
 we need to
 			create a specialization that exactly reflects the concepts the users of that
 			specialization are familiar with. If one tries to layer its actual needs over an
 			existing specialization (or one of the standard schemas), these may not exactly
 match
 			the concepts of the audience and thus it will look like DITA is not the best fit.

 			
 However, the problem with a specialization is how do we exchange it with other parties?
 We
 			need to also provide them with our specialization, and if they do not have our
 			specialization, then what happens?

 			
 One approach is to export the DITA content as generalized content. Then import such
 a
 			generalized package into an existing DITA installation by specializing as much
 as
 			possible, taking into account what is available on the target DITA installation.

 			
 How can this be achieved?

 			
 From the class of the root element, we can identify the possible specialized root
 elements and
 			check if we have them defined in a schema in the target DITA installation. Once
 we
 			choose a root element, then we need to analyze the domain attributes of the root
 element
 			and see what domains are defined in the target topic type and then specialize elements
 			from those domains back. Otherwise, if a domain is not present in the target schema,
 we
 			need to leave the base element.

 			
 We have support for generalization, which is relatively easy to implement, and we
 can probably
 			also obtain the export package in a generalized form. However, we are missing a
 tool to
 			take a generalized package, analyze a current DITA installation, and specialize
 			everything so that it matches what is available in that specific DITA installation.

 		

 Using DITA to Document a Software Product

 Besides working on an XML editing tool with lots of DITA editing functionality we also
 use DITA internally for editing the Oxygen User's Guide.

 In this article I will try to give you an overview of our entire workflow as evidence
 that
 DITA does work and that it can be used and implemented without expensive solutions.

 First, here's an overview of our needs:

 	Online Help which is available as WebHelp Responsive on our website. Our WebHelp Feedback integration allows users
 to add comments and ratings to each topic. Those comments can later be used by us
 to
 rephrase and improve our documentation.

 	PDF containing the entire contents of the user's manual. The PDF output is
 styled using CSS and obtained from DITA content using our Oxygen Publishing Engine. Nowadays, most of our users
 use the online WebHelp because it can be used much easier for finding certain
 topics. So, in our case, at least the PDF output is not popular anymore among
 users.

 	Offline Help which is available inside the installed application. Oxygen is a
 multi-platform application, so we need to generate both HTML Help (CHM) for
 Windows and JavaHelp for the Mac OSX and Linux
 installations. Also, for the Oxygen Eclipse Plugin, we need to generate
 Eclipse Help.

 We have two main distributions (Standalone and Eclipse plugin) and three main
 products (Editor, Developer and Author). We also have a web editing tool,
 WebHelp generation plugin and publishing engines. So we need to produce more than
 9 different
 publications from the same DITA content depending on the shipped product.

 And here's an overview of the tools we use:

 Git as a Version Control System

 We store our DITA content in a private GitHub repository and we also made a public
 GitHub repository containing a copy of our user manual's DITA content:https://github.com/oxygenxml/userguide. We use the
 free Oxygen Git client add-on for collaborating on the project.
 Other external Git clients like SourceTree or Fork can also be used to check
 out, edit and push changes to the Git repository. Our editing workflow is similar
 to what is
 described in this past webinar.

 Oxygen XML Author

 This may not come as a surprise but we use our own product to edit DITA content,
 partly because it's ours and partly because it is a very good tool. During the last
 couple
 of years this has been a good opportunity to improve our product based on our own
 feedback
 (feedback coming from our technical writers).

 Oxygen is used by the technical writers to write DITA content but we also
 have colleagues who review content and propose changes directly from the web browser.

 Oxygen Content Fusion

 The Content Fusion add-on for XML Author allows uploading
 the edited content to a cloud server and providing a web editing tool for people to
 provide
 feedback and review the DITA content directly in a web browser: https://www.oxygenxml.com/content_fusion.html.

 Oxygen Publishing Engine

 We use the Oxygen Publishing Engine (based on the DITA Open Toolkit) to publish
 DITA content to the outputs we are interested in, mostly WebHelp Responsive, PDF and
 Windows
 Help.

 Jenkins integration server

 We have an automated script which builds all the user manual outputs every night.

 Automated DITA Content Validation

 There is a Validate and Check for Completeness script which runs
 on a test server and does various types of checks on the DITA content (including
 checks for validation, filtering problems, broken links, etc).

 Atlassian Jira for Ticketing and Workflow

 We use Atlassian Jira to provide a workflow both for the issues which are related
 directly to our software product and for the issues which are related exclusively
 with our
 user's manual. The JIRA is integrated with both our SVN and GIT repositories
 so it shows for a certain issue all resources which have been modified to fix it.

 Guided DITA Authoring Solution Overview

 We have some past blog posts about how Oxygen can be used to impose various editing
 behaviors
 for your team. In this one, will try to bring all of these solutions together in a
 comprehensive overview.

 Learning to Work with DITA and Oxygen

 You can find useful links for learning how to edit DITA using Oxygen in this previous
 blog
 post: Resources for learning DITA with Oxygen.

 Migrating to DITA

 There are multiple reasons why you would want to migrate from unstructured content
 to
 structured: Migrating to a Structured Standards-based Documentation Solution.

 This older blog post details some possibilities of migrating Word documents to DITA:
 How to Migrate from Word to DITA.

 You also have ways to migrate from XML-based standards (like DocBook or XHTML to DITA)
 using a set of predefined transformation scenarios.

 Restricting the Visual Editing Experience

 The entire visual editing experience in Oxygen's Author editing mode is driven by
 CSS. Oxygen has support for defining various CSS layers that can be applied when
 editing DITA content. For example, if you choose to create a Lightweight DITA topic
 in
 Oxygen, it has a special editing layer that contributes a combination of buttons,
 hints, and
 form controls designed to assist and guide the author. The following blog post details
 how a
 custom CSS that will be used to enhance the visual editing experience can be created
 and
 shared with others: Customizing the DITA Visual Editing Experience.

 Implementing Your own Style Guide

 Suppose you are a team of technical writers collaborating on a DITA-based project
 and you
 have your own various best practices in regards to which elements to use and when
 to use
 them. So, at some point you gather a set of HTML resources that explain how various
 DITA
 elements should be used, you store them on an internal server, and you want all your
 team
 members to have access to that set of HTML resources directly from Oxygen. This blog
 post
 provides more details and useful links to help you get started: Implementing your own Style Guide.

 Imposing Controlled Attribute Values

 If you want to impose DITA attribute values that need to be set for profiling or general
 use, this blog post should cover all you need to know about this: Controlled Attribute Values for your DITA Project.

 Imposing Business Rules and Structure Restrictions to the DITA Content

 In most cases, instead of relying on people to memorize numerous internal documentation
 style rules, you can convert many of these rules to Schematron and allow the application
 to
 automatically signal the content author when a rule is violated. You can also add
 quick
 fixes to provide authors various ways to rectify the problem. This blog post contains
 more
 details about this: Schematron Checks to help Technical Writing.

 The DITA framework can be extended to add new Schematron rules: Sharing Schematron Validation Rules.

 Running Batch Validation Checks on all of Your DITA Content

 The Validate and Check For Completeness tool available in the DITA Maps
 Manager view performs a lot of different consistency checks on all your DITA topics.
 It can also be used to apply Schematron business rules on all of your topics: DITA Map Validate and Check for Completeness Overview.

 Sharing DITA Editing Customizations with Your Team

 Most of the custom editing behaviors, toolbar, and menu buttons that are available
 when
 editing DITA content are defined in the DITA framework configuration. A framework
 configuration's general anatomy is described here: The Oxygen SDK (Part 2: Frameworks).

 The framework configuration can be shared with all of your team members. For example,
 here
 is a way to restrict team members from using certain DITA elements: Document Type Extension Sharing.

 Furthermore, here is a way to distribute new DITA file templates to your team: Sharing New Custom File Templates for a Specific Vocabulary.

 Sharing Global Application Settings with Your Team

 Suppose you want all of your team members to enable the automatic spell checker when
 writing documentation, or you want all of them to use a custom term dictionary or
 a custom
 set of learned words. This older blog post offers some hints about how global Oxygen
 settings can be distributed to your team members: Sharing Application Settings.

 Collaboration, Content Management, and Version Tracking

 All major Content Management Systems (CMSs) have plugins that can be installed in
 Oxygen to
 provide access to the CMS: https://www.oxygenxml.com/partners.html#cmssolutionpartners.

 Even if you lack the funds to buy a commercial CMS, there are still plenty of open
 source
 version tracking solutions that provide the possibility of collaboration on a single
 DITA
 project: Collaboration (Teams working on a common XML project). For
 example, the Oxygen User's Manual is written in DITA and we use a GitHub
 private repository to collaborate on it: Collaboration for Documenting a Software Product using DITA.

 Allowing Subject Matter Experts to Review Content

 Many technical writers are interested in having their content reviewed by the subject
 matter experts who are directly involved in building the tools. Oxygen has support
 for
 change tracking and adding comments directly in the edited content. Subject matter
 experts
 do not necessarily need to have the standalone version of Oxygen installed. The Oxygen
 Web
 Author is an online editing and reviewing solution that allows them to add comments
 and
 propose changes directly in the DITA content by using any device with a web browser
 (laptop,
 tablet, phone): https://www.oxygenxml.com/xml_web_author.html.

 I hope this overview will help you to implement a complete guided authoring experience
 using
 Oxygen. As usual, if you have any questions or suggestions, they are welcome.

 Maintaining a Healthy DITA Project

 How should a Happy and Healthy Documentation Project Look Like?

 [image: ../images/brocolli.png]

 Do you have a Healthy Project?

 	

 Focus on writing and not on workflow.

 	

 Involve peer-reviews, SMEs and end users.

 	

 Easy start for first-time contributors.

 	

 Easier produce deliverables and correct errors in older deliverables.

 	

 Allow for future evolution: more writers, more outputs, more content, more
 products.

 Why do big companies use the DITA standard?

 	

 Standard means owning your content and no vendor lock-in (editing or
 publishing).

 	

 DITA works very well with topic-based authoring.

 	

 Lots of content reuse potential.

 	

 Reuse lowers translation costs.

 DITA Doc Project Aspects

 	

 Storage

 	

 Workflow

 	

 Collaboration

 	

 Sharing Common Constraints (editing, validation, spell check
 dictionaries, ...)

 	

 Structure

 	

 Managing links and reusable content

 	

 Translation

 	

 Publishing (Producing Deliverables)

 Storage

 [image: ../images/storage.png]

 	

 Commercial content management systems (CMS).

 	

 Open Source version control systems: Git, Subversion, CVS

 Version Control

 [image: ../images/history.png]

 	

 Ability to Tag Releases and Create Branches.

 	

 See history for resources.

 Working with the storage system

 	

 Commercial CMSs – Remote editing, locking.

 	

 Open Source version control systems – Local working copies, no editing
 restrictions → conflicts.

 Hint: Maybe you can use the same storage system as software developers in
 your company.

 Collaboration and Workflow

 [image: ../images/colaboration.png]

 	

 We invest a lot of time each day collaborating with our team or external
 collaborators.

 	

 Collaboration should be as comfortable as possible.

 Workflow

 [image: ../images/workflow.png]

 Issue tracking

 	

 Using workflow features in the CMS

 	

 Using issue management systems like Bugzilla, Atlassian JIRA or Trello.

 	Tip: Linking the product development with the documentation
 development.

 Issue Tracking Examples

 Custom workflows

 	

 Documentation task specific workflow

 	

 Integrate QA and documentation in software development process

 Issue tracking – Simple Documentation Workflow

 [image: ../images/docworkflow.png]

 Issue tracking – Development and Documentation Workflow

 [image: ../images/issueworkflow.png]

 Issue Tracking and Storage Integration

 Issue Tracker can provide a single place where you can monitor a ticket from start
 to
 end, including:

 Issue description and details

 	

 Who worked on that issue

 	

 What was changed in the application

 	

 What was changed in the documentation

 	

 Who should be notified when issue is resolved.

 Involving Subject Matter Experts

 	

 SMEs provide original content (DITA or Markdown or ...)

 	

 Let SMEs review the published output.

 	

 HTML with feedback forms

 	

 PDF with comments.

 	

 Formal review with web editing tool integrated with storage system.

 	

 Informal review DITA content using change tracking and comment
 capabilities

 How can end users collaborate with us?

 	

 Send feedback via email/forum/phone.

 	

 Send feedback in the published HTML output.

 	

 Give feedback using an online DITA editing tool with comment-only capabilities.

 Contribution Consistency

 [image: ../images/contrib.png]

 Sharing common settings between writers

 	

 Custom style guide.

 	

 Specific editing enhancements.

 	

 Specific validation settings.

 	

 Controlled attribute values.

 	

 Custom spell and auto-correct dictionaries.

 	

 Various other common preferences.

 Custom Style Guide

 The style guide is internal documentation about how to write documentation.

 How can we remember what’s written in the style guide?

 	

 Searchable help output from internal style guide.

 	

 Find an automatic way to impose style guide rules when editing.

 Automating Style Guide Rules

 Schematron Checks to help Technical Writing

 	

 Schematron to add custom validation rules.

 	

 Schematron Quick Fixes to propose quick fixes for each custom error message.

 Using the same terminology rules

 Checking Terminology with Oxygen XML Editor

 	

 Custom Spell dictionaries.

 	

 Custom auto-correct mappings.

 	

 Advanced terminology checkers like Acrolinx, HyperSTE or LanguageTools.

 	

 Building your own terminology checker using Schematron.

 DITA Project Structure

 [image: ../images/projstruct.png]

 	

 Organizing various resources in various folders

 	

 Some CMSs may not consider this relevant.

 File and folder naming/organization conventions

 	

 By type:

 	

 Tasks/t_installation.dita

 	

 Concepts/c_profiler.dita

 	

 By semantics:

 	

 xslt_debugger/backmapping.dita

 DITA Style Guide

 Managing Content Reuse

 DITA Reuse Strategies

 [image: ../images/reuse.png]

 	

 Separate folders containing reusable content.

 	

 Keep dictionaries of reusable components

 	

 Prefer indirect references (conkeyrefs)

 Managing Links

 DITA Linking Strategies

 [image: ../images/link.png]

 	

 Prefer indirect links (key references)

 	

 Reuse link targets

 	

 Re-direct links depending on publication

 	

 Use relationship tables

 Project-wide refactor operations

 	

 Convert between various topic types.

 	

 Rename or move one or more topics.

 	

 Change XML structure in topics from the entire project.

 	Example: Change the value of a specific attribute.

 Translation

 [image: ../images/translate.png]

 Translating your DITA Project

 	

 You create your content in the primary language using a DITA authoring tool .

 	

 Send a copy of the relevant DITA files to the localization service provider
 (LSP).

 	

 Receive translated DITA content back from (LSP).

 Optimizing for translation

 	

 Use a controlled vocabulary (simplified English).

 	

 Avoid reusing inline elements other than product names.

 https://lists.oasis-open.org/archives/dita/201301/msg00029.html

 	

 Avoid profiling/filtering content at inline level.

 Publishing

 [image: ../images/publish.png]

 	

 Map-wide Validation and Consistency Checks

 	

 Validate each topic according to DITA standard.

 	

 Check for broken links, key references and content references, missing images or
 referenced resources.

 	

 Check for broken links to remote web sites.

 	

 Check for broken links in the context of profiling filters.

 Producing the deliverables

 	

 Checking the project before publishing.

 	

 Sharing publishing customizations

 	

 Automatic production of deliverables either via CMS or via an automated open
 source server (Jenkins).

 Useful links

 	

 DITA Style Guide (by dr. Tony Self):

 https://www.oxygenxml.com/dita/styleguide/webhelp-feedback/

 	

 Intelligent Style Guide (by George Bina):

 https://github.com/oxygenxml/dim

 	

 Oxygen XML Blog (Reuse, Linking, custom validation, sharing settings):

 Welcome!

 Conclusions

 A healthy DITA project needs to:

 	

 Be Manageable.

 	

 Allow for scalability.

 	

 Allow for easy collaboration.

 	

 Allow for detection and correction of mistakes before the deliverables are
 published.

 	

 Allow for correction of mistakes after the deliverables are published.

 But don’t panic if you do not have all the aspects of a project covered, your project
 does
 not need to be perfect, it needs to be perfectible.

 [image: ../images/nopanic.png]

 DITA Linking Strategies

 This small tutorial is based on the "DITA Linking Strategies" presentations I made
 for
 the DITA Europe 2016 and DITA North America 2017 conferences. It's a general overview
 about
 DITA linking possibilities and best practices. Also, it's meant as a continuation
 of the DITA Reuse Strategies blog post.

 According to Wikipedia:

 "A link, is a reference to data that the
 reader can directly follow either by clicking, tapping, or hovering."

 Basically, we should regard linking as yet another form of content reuse, except that
 instead of presenting the content in place, it re-directs the end user to some other
 resource.

 I'll start with describing linking at DITA Map level.

 Map-Level Linking

 A DITA Map uses topic references to assemble the content of a
 publication.
 <topicref href="installation.dita">
 <topicref href="server_installation.dita"/>
 <topicref href="client_side_installation.dita"/>
 </topicref>

 Depending on the output format, the topic reference may be a link in the table of
 contents for the XHTML-based outputs or it may be interpreted as a content reference
 for the
 PDF-based output that generates a single monolith document. So the role of the
 topicref is dual, it may sometimes be regarded as a link to a topic and
 sometimes as a content reference.

 Chunking

 DITA topic modules should be kept as small as possible, but sometimes the end user
 may need to read more than one topic to achieve a single task. So, when publishing
 to
 HTML-based outputs, you will end up asking yourself this question:

 Should I prefer larger
 HTML files or more links in the TOC?

 And you should always consider these two ideas:

 	

 Links are disruptive. Ideally, users would not need to jump around in
 content to read the entire story they are searching for.

 	Small topics that are usually read consecutively by the end user can
 probably get merged together.

 For example, if the installation of your product requires installing both a
 server-side and a client-side component, by using DITA chunking you can choose to
 have
 separate DITA topic modules for each of the installation procedures but merge the
 topics
 together in the web-based
 outputs:
 <map>
 <title>User Guide</title>
 <topicref href="installation.dita" chunk="to-content">
 <topicref href="server_installation.dita" toc="no"/>
 <topicref href="client_side_installation.dita" toc="no"/>
 </topicref>
</map>

 You can read more about chunking in the DITA 1.3 specification. The DITA Style Guide also has a good overview about why
 it is preferable to write small topics and then merge them together using the chunking
 mechanism.

 Topic-Level Linking

 Links that appear inside topics can be divided into various categories and I'll
 discuss each of these categories separately.

 In-Content Links

 In-content links are links added manually in the topic
 content:
 See: <xref href="http://www.../" format="html" scope="external"/>

 You should keep in mind that this kind of link is disruptive to the reading
 experience because when end users encounter them, they need to decide weather to read
 further on or to follow the link. On the other hand, this may sometimes be a good
 thing. For
 example, one of the installation steps may require the end user to download a certain
 library from an external website before continuing.

 You can read more about links in general in the DITA 1.3 specification. The DITA Style Guide, written by Tony Self, also
 discourages the use of in-content links.

 Related Links

 Related links are placed at the end of the DITA topic and they allow the end user
 to
 explore additional resources after the current topic has been
 read.
 <related-links>
 <link href="http://tomcat.apache.org/" format="html" scope="external"/>
</related-links>

 To minimize disruption when reading the content in general, the preferred place where
 to place links is at the end of the generated HTML page.

 You can read more about related links in the DITA 1.3 specification.

 Defining Related Links using Relationship Tables

 Related links do not need to be manually added at the end of each topic. You can
 define relationship tables in the DITA
 Map:
 <reltable>
 <relrow>
 <relcell>
 <topicref href="client_side_installation.dita"/>
 </relcell>
 <relcell>
 <topicref href="server_installation.dita"/>
 </relcell>
 </relrow>
 ……..
 </reltable>

 These tables can define associations between two or more topics, associations that
 automatically contribute to the related links creation in the generated HTML output.

 Here are some benefits of using relationship tables:

 	

 A topic should have as few links as possible defined directly within. This makes it
 easier to reuse the topic in various contexts and keeps it as separate as possible
 for
 other parts of the DITA project, decreasing the possibility of broken links.

 	

 By default, links defined in relationship tables are bi-directional, allowing users
 to land on any of the topics when searching for solutions and find their way to the
 related ones.

 	

 Using a relationship table separates the task of writing topics from the task of
 finding relationships between topics.

 You can read more about relationship tables in the DITA 1.3 specification. The DITA Style Guide also recommends using relationship
 tables.

 Indirect Links (Key References)

 All the link samples we've look at so far have been direct links, links that point
 to
 the target using the @href attribute. Indirect links require two steps:

 	Define a key in the DITA Map for the
 target.
 <keydef keys="client_installation" href="client_side_installation.dita"/>

 	Use the defined key to reference the target
 resources.
 <xref keyref="client_installation"/>

 Here are some of the benefits of indirect linking:

 	

 Offers the ability to reuse link target text and meta data. If you want
 to have custom text for a certain link, you can define it directly in the DITA
 Map:
 <keydef keys="dita_ot_website" href="http://www.dita-ot.org/" format="html"
 scope="external">
 <topicmeta>
 <linktext>DITA Open Toolkit Web Site</linktext>
 </topicmeta>
 </keydef>
and
 then add key references in all other
 places:
 <xref keyref="dita_ot_website"/>

 	

 Easier conditional linking (including links to topics that sometimes may
 be missing). If you want your topic to link either to one target or to another
 depending on the filtering/profiling conditions, instead of adding profiling directly
 on the link, you can add the profiling conditions directly in the DITA
 Map:
 <topicref keys="slicing" href="slicing_vegetables_for_experts.dita" audience="expert"/>
 <topicref keys="slicing" href="slicing_vegetables_for_novices.dita" audience="novice"/>
 <keydef keys="slicing" audience="noLink"><topicmeta><keywords>
 <keyword>Slicing</keyword></keywords></topicmeta>
 </keydef>
and
 then link to the key from each topic:

 <xref keyref="slicing"/>

 	

 Easier link management. A good overview about all the outbound links in
 your project helps you maintain and control lists of allowed external web sites. With
 indirect references, you can define all references to external resources in a separate
 DITA Map. An example of a DITA project using indirect links to achieve separation
 of
 links by purpose can be found here: https://github.com/oxygenxml/dita-project-best-practices.

 	Makes it easier to move/rename topics. When you move or rename a topic
 referenced via indirect links, only the link defined in the DITA Map will break, making
 it easier to fix broken links.

 The DITA 1.3 specification has a chapter
 about indirect links.

 Auto-Generated Links

 Until now, I've talked about manually added links, either in the topic or in
 relationship tables. Using the DITA @collection-type attribute, you can
 define relationships between parent and child topic references in the DITA Map,
 relationships that result in automatic links added between
 them:
 <topicref href="installation.dita" collection-type="sequence">
 <topicref href="server_installation.dita"/>
 <topicref href="client_side_installation.dita"/>
 </topicref>

 There are 3 useful types of @collection-type values:

 	

 Unordered - Links are generated from parent to children, and from children to
 parent.

 	

 Family - Links are generated from parent to children, from children to parent,
 and from sibling to sibling.

 	

 Sequence - Links are generated from parent to children, from children to
 parent, and from child to previous sibling (if applicable) and next sibling (if
 applicable).

 You can read more about auto-generated links in the DITA Style Guide.

 Conditional Links in Distinct Publications

 You may publish documentation for multiple products from the same DITA
 content. Also, you may want to have links point to various targets depending on the
 product
 for which you want to publish the documentation. Or, you may want to suppress links
 completely in certain publications.

 When using direct linking, you will need to profile each link depending on the
 publication:
 Find our more about slicing vegetables: <xref href="slicing_vegetables_for_experts.dita" audience="expert"/>
<xref href="slicing_vegetables_for_novices.dita" audience="novice"/>.
With
 indirect links, you can define the profiling attributes as DITA Map
 level:
 <topicref keys="slicing" href="slicing_vegetables_for_experts.dita" audience="expert"/>
 <topicref keys="slicing" href="slicing_vegetables_for_novices.dita" audience="novice"/>
and
 thus, simplify the reference made in the topic
 content:
 Find our more about slicing vegetables: <xref keyref="slicing/>.

 Conditional Links in the Same
 Publication

 Using DITA 1.3 key scopes, you can reuse a topic multiple times in a
 DITA Map and have each referenced topic contain links to various target topics. For
 example,
 if my preparing_vegetables.dita topic has a
 link:
 <link keyref="slicing"/>

 you
 can define various key scopes in the DITA Map that bind the "slicing" key to various
 targets:
 <topichead navtitle="Cooking for Experts" keyscope="expert">
 <topicref href="preparing_vegetables.dita" keys="preparing"/>
 <topicref href="slicing_vegetables_for_experts.dita" keys="slicing"/>
 </topichead>
 <topichead navtitle="Cooking for Novices" keyscope="novice">
 <topicref href="preparing_vegetables.dita" keys="preparing"/>
 <topicref href="slicing_vegetables_for_novices.dita" keys="slicing"/>
 </topichead>

 This
 previous blog post contains more details about key
 scopes.

 Link Text

 When linking to an external resource or to a DITA topic or element, the publishing
 engine will attempt to deduce the link text from the target context. For example,
 the link
 to a DITA topic or element that contains a <title> will use that
 title as the link text. The link to an external resource (for example to
 http://www.oxygenxml.com) will, by default, use the HTTP location as the
 link text. You can also customize each link text individually. So, ask yourself this
 question:

 Should I leave the link text to be automatically computed or should I set a more
 friendly text?

 For internal links to elements that have a title, in general it is more flexible to
 not set a custom text and let the publishing engine decide one for you. For external
 links,
 you should usually specify your custom link text.

 Should I Link or Should I Reuse?

 Suppose you want to bring a certain paragraph, note, or section to the end user's
 attention. If that particular target element is not very large, you should always
 reuse it
 (using a content reference) instead of linking to it.

 Conclusions

 As with all large projects, managing links in a growing DITA project can be
 problematic, so you need to become organized. As an overview of what we've discussed
 so far,
 I suggest the following best practices:

 	

 Linking is a form of reuse so:

 	Reuse small pieces of content instead of linking to them

 	Avoid too much linking (linking is disruptive)

 	

 Use indirect links. It will allow you to reuse link text and make profiling/filtering
 easier while giving you a better overview of the outbound links for your project.

 If you want to experiment with the various linking strategies I discussed above, you
 can
 find some samples here: https://www.oxygenxml.com/forum/files/linking-strategies-samples.zip.

 DITA 1.3 Branch Filtering - Next Generation of Reuse

 In this blog post, I'm going to give you a small example of how branch filtering can
 benefit
 two cases of reuse, which could not be done previously. You can read more about branch
 filtering in the DITA 1.3 specs.

 Case 1 - Combine Two Profiles in the Same Publication

 Suppose that you have a DITA Project about preparing and cooking vegetables and your
 DITA map looks like
 this:
 <!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
 <title>Cooking vegetables</title>
 <topicref href="cleaningTableArea.dita" audience="novice"/>
 <topicref href="preparingVegetables.dita"/>
 <topicref href="addingExtraFlavor.dita" audience="expert"/>
 </map>
 You have some content common both for expert and novice
 users but you also have content that is specific for a target audience. You do not
 need to
 teach expert chefs how to clean the table and you do not want to teach novice
 cooks about enhanced flavoring techniques.

 All of this is fine until at some point you decide to produce a publication that contains
 content merged inside both the novice and the expert map content. Here's where branch
 filtering can help. You can create a main DITA map that reuses your current DITA map
 with
 two profiling
 contexts:
 <!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
 <title>Cooking Vegetables.</title>
 <topichead navtitle="Cooking for Beginners" keyscope="novice">
 <topicref href="vegetables.ditamap" format="ditamap">
 <ditavalref href="novice.ditaval"/>
 </topicref>
 </topichead>

 <topichead navtitle="Cooking for Experts" keyscope="expert">
 <topicref href="vegetables.ditamap" format="ditamap">
 <ditavalref href="expert.ditaval"/>
 </topicref>
 </topichead>
</map>

 Case 2 - Reusing Common Topics with Different Product Names

 Suppose
 that you have a simple DITA task in which you have described how a certain task can
 be performed for a certain product. In our case, the task describes peeling
 potatoes:

 [image: ../images/image1.png]

 The task works and at some point in your Vegetables Soup publication, you realize that
 you need to write a similar task about peeling cucumbers. The task is exactly the same,
 except for the product name. So naturally you want to reuse the existing written task.
 For
 this, we re-write the task so that instead of the product potatoes, it contains two
 consecutive profiled product
 names:
 Peeling <ph product="potatoes">potatoes</ph><ph product="cucumbers">cucumbers</ph>
and
 include the task in the main DITA map in two places with different ditaval filters
 applied:
 <!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
 <title>Peeling Vegetables.</title>
 <topichead navtitle="Potatoes">
 <topicref href="peeling.dita">
 <ditavalref href="potatoes.ditaval"/>
 </topicref>
 </topichead>

 <topichead navtitle="Cucumbers">
 <topicref href="peeling.dita">
 <ditavalref href="cucumbers.ditaval"/>
 </topicref>
 </topichead>
</map>

 This kind of usage will produce two topic HTML files from the single
 peeling.dita (in the HTML output folder), one for each filter
 context.

 The DITA samples for this post can be downloaded from https://www.oxygenxml.com/forum/files/branchFilteringBlogSamples.zip.

 As usual, any feedback is welcomed.

 DITA 1.3 Key Scopes - Next Generation of Reuse

 In this blog post I'm going to give you a small example of how key scopes can benefit
 simple
 cases of reuse which could not be done previously.

 Let's say you have a simple DITA task in which you have described how a certain task
 can be performed for a certain product. In our case, the task describes peeling a
 potato:

 [image: ../images/image1.png]

 The task works and at some point in your Vegetables Soup publication you realise you
 need to write a similar task about peeling cucumbers. The task is exactly the same,
 except the product name. So naturally you want to reuse the existing written task.
 For this we
 re-write the task so that instead of the product potatoes it contains a key
 reference:
 <ph keyref="vegetable"/>

 Next we need to define in our DITA Map the vegetable key and bind it to a specific
 value in the potatoes
 context:
 <topicref href="potatoes_overview.dita" keyscope="potatoes">
 <!-- Define the vegetable key value in this key scope -->
 <keydef keys="vegetable">
 <topicmeta>
 <keywords>
 <keyword>potatoes</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <!-- Reference to the common task -->
 <topicref href="peeling.dita"/>
 </topicref>
and
 add in our DITA Map another key scope with the overview and the task which deal with
 cucumbers
 peeling:
 <topicref href="cucumbers_overview.dita" keyscope="cucumbers">
 <!-- Define the vegetable key value in this key scope -->
 <keydef keys="vegetable">
 <topicmeta>
 <keywords>
 <keyword>cucumbers</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <!-- Reference to the common task -->
 <topicref href="peeling.dita"/>
 </topicref>

 As you may have noticed, we have not used the key scope names for anything. Just by
 defining
 the key scopes, we made the product name to be expanded differently in both contexts.
 But our
 Vegetables Soup publication may also contain a topic which lists all possible
 vegetables. This topic is defined in a context outside any key
 scope:
 <topicref href="vegetables_over.dita"/>
and
 this overview topic can refer to each product name using the full keyscope key reference
 value:
 <!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="vegetables_over">
 <title>Vegetables Overview</title>
 <body>
 <p>This is an overview of all vegetables necessary to make soup. You will learn how to use
 vegetables like <ph keyref="potatoes.vegetable"/> and <ph keyref="cucumbers.vegetable"/> to
 make a great starter soup.</p>
 </body>
</topic>

 As stated before, this kind of reuse was not possible using the standard DITA 1.2
 standard
 constructs. As it turns out, with DITA 1.3 we can also implement this kind of reuse
 using
 branch filtering. The DITA samples for this post can be downloaded from https://www.oxygenxml.com/forum/files/keyscopesBlogSamples.zip.

 As usual any feedback is welcomed.

 DITA Reuse Strategies

 	Introduction

 	Version Control and Reuse

 	Converting XML content to various output formats

 	Create larger publications from existing ones

 	Reuse content for similar products

 	Reuse fragments of content

 	DITA 1.3 Contributions to Reuse

 	Reuse non-DITA resources

 	Conclusions

 Introduction

 This small tutorial is based on a presentation called DITA Reuse Strategies I made at
 DITA Europe 2015. It's main purpose is to explore the numerous possibilities of reusing
 content within the DITA standard.

 First of all I think the main reasons we want to reuse content in technical documentation
 are
 these ones:

 	Consistent explanations for the same situations.

 	Less content to translate.

 	Decreased time spent writing content.

 	Obtain different publications from common content.

 I would like to start by saying that technical documentation writers have two very
 important
 roles:

 	Record knowledge about using tools and processes.

 	Spread knowledge to reach large audiences.

 As a software engineer, having a product user's manual which is rich in examples and
 answers to frequently asked questions saves me time. Instead of individually explaining
 to end
 users various application behaviors I can give links to the manual or better yet our
 end users
 find that content by themselves. Because there are just not enough human resources
 in any
 company in order to individually help each end user.

 We'll start with a top down approach to reuse. Complete small examples for most of
 the reuse
 situations described below can be found here: https://www.oxygenxml.com/forum/files/dita_reuse_strategies_samples.zip.

 Version Control and Reuse

 [image: ../images/image15.png]

 Version Control allows you to reuse content tagged at a certain point in time in order
 to
 produce older versions of your publications. So no matter what open source version
 control
 system like SVN or GIT you are using or commercial CMS, you should always have the
 possibility
 to produce older bug-fix versions for your documentation. So you can think of Version
 Control
 as content reuse on the time line axis.

 Converting XML content to various output formats

 [image: ../images/image11.png]

 XML in itself is perfect for reuse because:

 	XML is an intermediary format. We don't do XML for the pleasure of it. We do it
 because we want to obtain multiple outputs from it and it has enough content and structure
 inside to allow for it. Some call this single source publishing but it can be just
 as easily be called content reuse.

 	XML contains the necessary content.

 	XML contains the necessary structure.

 	XML is a standard. So you have a choice between open source and commercial
 tools.

 	XML is a standard for defining standards. Among which DITA, the most
 versatile standard XML vocabulary when it comes to reuse.

 Whatever output you will obtain from the XML, there is a constant, this XML
 format which contains all your data will contain more semantic meaning than any of
 the
 published outputs.

 You can read more about the selling points of using XML in this older blog post: A Short Story of Reuse.

 Create larger publications from existing ones

 [image: ../images/image12.png]

 You can merge multiple existing DITA Maps in various new publications.

 The only existing danger for this would be if you define keys with the same name but
 different values in both publications. Fortunately DITA 1.3 comes to the rescue with
 the new
 keyscopes support which allows keys with the same name
 to be resolved to various values on each
 scope:
 <!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
 <title>Vegetables Soup</title>
 <topicref href="carrots/carrots.ditamap" format="ditamap" keyscope="ks1"/>
 <topicref href="potatoes/potatoes.ditamap" format="ditamap" keyscope="ks2"/>
</map>

 [image: ../images/image13.png] Even if you have a single root map you can keep related
 sections or chapters in different DITA Maps. Besides adding more logical structure
 to your
 content you never know when you'll reuse those sub-maps in different publications.

 Reuse content for similar products

 [image: ../images/image5.png]

 This is the most common case for successful reuse, you have multiple similar products
 which
 share common functionality. So similarly the technical documentation for each of those
 products will also share common content. This is usually done in two ways. In the
 following
 sections I will use the term root map for referring to the DITA Map which will actually
 get published.

 1. Use multiple Root Maps.

 [image: ../images/image6.png]

 Each root map is published to obtain the output for a certain product type. As major
 benefits you can:

 	Reuse entire topics.

 	Define variable product names.

 	Remap links and reused content using keys.

 Publication maps for phone models X1000 and X2000 using almost similar content
 except Blue-tooth chapter which appears in only one of them.
[image: ../images/image8.png]

 2. Use a single Root Map.
[image: ../images/image7.png]You have a single publication root map which gets
 published for various products using profiling filters applied on it. These filters
 can be
 applied either at topic or element levels. The product name is variable and depends
 on the
 applied filters.

 	

 Related information

 	DITA Profiling / Conditional Text

 Reuse fragments of content

 Until now we have regarded the topic as an indivisible unit in our project. But there
 are
 many times when it becomes useful to reuse smaller elements in various places throughout
 the
 publication.

 	Content References

 	Content Key References

 	Content Reference Ranges

 	Content Reuse Tips and Tricks

 	Pushing Content

 	Key References (Variables)

 Content References

 Content references are the initial and probably the mostly used reuse mechanism in
 the DITA
 specification. They allow reusing elements from a topic in various other topics throughout
 the publication.

 Small example of content referencing

 Reusable Component from topic reusables.dita:

 <dd id="CPU">
 <ul id="ul_lym_bqd_x4">
 Minimum - <tm tmtype="tm">Intel Pentium III</tm>/<tm tmtype="tm">AMD Athlon</tm>
 class processor, 1 <term>GHz</term>.
 Recommended - Dual Core class processor.

 </dd>

 Content reference:

 <dd conref="path/to/reusables.dita#topicID/CPU"/>

 You can read more about how content references can be inserted in Oxygen here: https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conref.html.

 Content Key References

 When compared to direct content references, content key references are done with indirect
 addressing. You first need to define a key for the topic which contains the reused
 content and
 make the content key reference using that key.

 Small example of content key referencing

 Reusable Component from topic reusables.dita:

 <dd id="CPU">
 <ul id="ul_lym_bqd_x4">
 Minimum - <tm tmtype="tm">Intel Pentium III</tm>/<tm tmtype="tm">AMD Athlon</tm>
 class processor, 1 <term>GHz</term>.
 Recommended - Dual Core class processor.

 </dd>

 Key definition in DITA Map:

 <keydef keys="reusable.install" href="reusables/reusables.dita"/>

 Content key reference:

 <dd conkeyref="reusable.install/CPU"/>

 You can read more about how content key references can be inserted in Oxygen here:
 https://www.oxygenxml.com/doc/ug-editor/#topics/eppo-create-conkeyref.html

 Content Reference Ranges

 Instead of reusing a series of consecutive elements (for example steps, list items)
 one by
 one you can reuse an entire range of sibling elements. For this to work, both the
 initial and
 the final elements need to have IDs defined on them.

 Small example of content key reference with ranges

 Reusable steps from task reusable_steps.dita:

 <steps>
 <step id="washing">
 <cmd>Wash the vegetables thoroughly.</cmd>
 </step>
 …..
 <step id="peeling">
 <cmd>Pass the peeler gently over the vegetable.</cmd>
 </step>
 </steps>

 Key definition in DITA Map:

 <keydef keys="reusable_steps" href="reusable_steps.dita"/>

 Content key reference range:

 <steps>
 <step conkeyref="reusable_steps/washing" conrefend="default.dita#default/peeling">
 <cmd/>
 </step>
 </steps>

 The usual dialog from Oxygen used to insert reusable content can also be used to select
 the
 range of elements to insert: https://www.oxygenxml.com/doc/ug-editor/#topics/insert-dita-content-reference.html.

 Content Reuse Tips and Tricks

 I tried to compile below a set of best practices to follow when reusing content:

 [image: ../images/image10.png]

 	Keep all your reused content in special topics located in special folders. Technical
 writers need to know that they are editing content which potentially is used in multiple
 contexts.

 	Keep a description for each reused element. You can have topics which act like
 dictionaries of reused content. A table of reused content can have two columns. On
 the
 first column each cell contains the reused element and on the second one you can have
 a
 small description for each reused element. The description acts as metadata, it may
 give
 the technical writer more details about how that content should be reused.

 	 Use conkeyrefs instead of conrefs. Really, because they use relative
 paths conrefs always break when you move topics around. But more about conkeyrefs
 in the
 next section.

 	When using conkeyrefs you should create a special map with key definitions. This keeps
 the reused content and the keys for it separate from the live content.

 Pushing Content

 Besides the techniques we've seen so far for pulling reused content in multiple places
 you
 can also push content to a certain specified place inside an existing topic.

 So why push content?

 Imagine you have an existing publication "Cooking Book" containing a task with a couple
 of
 steps for peeling vegetables. At some point you create the DITA Map for a larger publication
 called "Cooking Book for Pros" which reuses the entire original publication by referencing
 to
 the original publication DITA Map. But you somehow need to add extra steps in the
 original
 task when the larger publication gets printed.

 [image: ../images/image16.png]

 Pushing Content to an existing sequence of steps

 Sequence of steps from the original task:

 <steps>

 <step id="peeler_handling">
 <cmd>Pass the peeler gently over the vegetable.</cmd>
 </step>
 </steps>

 Key definition in DITA Map for the task which will push the content:

 <keydef href="stepsPusher.dita" keys=”peeling”/>

 Content key reference push done from the "stepsPusher.dita" task:

 <steps>
 <step conaction="mark" conkeyref="peeling/peeler_handling">
 <cmd/>
 </step>
 <step conaction="pushafter">
 <cmd>Read the instructions.</cmd>
 </step>
 </steps>

 So the only purpose of the "stepsPusher.dita" task which is referenced
 with a resource-only processing role and thus does not appear at all in the output is
 to modify the content of the original task which gets published.

 How do we push content in Oxygen? First you would need to define an ID on an element
 which
 will be the target for our push. The conref push mechanism allows us either to replace,
 insert
 an element before or after this target element. After this you can create the topic
 which
 pushes the content, create the step which will be pushed. You can right click inside
 this
 steps and choose Reuse->Push Current Element....

 Key References (Variables)

 You can reuse simple variables like product name, executable, and so on by defining
 keywords
 in the Dita Map and then using keyref's in topics to reuse those text
 fragments.

 Reusing keywords

 Defining the reused keyword in the DITA Map:

 <!-- product name -->
 <keydef keys="product" product="editor">
 <topicmeta>
 <keywords>
 <keyword>Oxygen XML Editor</keyword>
 </keywords>
 </topicmeta>
 </keydef>

 Reusing the keyword in a topic:

 <title>Installation Options for <ph keyref="product"/></title>

 In Oxygen you can create key definitions in the DITA Map by right clicking in the
 DITA Maps Manager and choosing Append Child->Key definition with keyword....
 After this, in the topic you can use Oxygen's regular Reuse Content action to insert the
 keyref.

 DITA 1.3 Contributions to Reuse

 DITA 1.3 takes content reuse to an entire new level allowing you to:

 	Reuse topic with variable content depending on context (keyscopes).

 	Reuse the same content profiled in various ways in the same publication (branch
 filtering).

 	Reuse with Key Scopes

 	Reuse with Branch Filtering

 Reuse with Key Scopes

 Using DITA 1.3 key scopes you can reuse a topic in multiple places in the DITA Map
 with slightly different content.

 Reuse using key scopes

 Let's say you write a topic about Windows installation for your software
 product:
 <!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="installation">
 <title><ph keyref="osName"/> Installation</title>
 <body>
 <p>
 <ol id="ol_g5h_st4_zt">
 Download the executable.
 Run the executable by double clicking it.
 Follow steps described in the installation wizard.

 </p>
 </body>
</topic>
and
 at some point your realise that exactly the same steps need to be followed for the
 Linux
 installation. The only difference is the name of the operating system. You use a keyref
 to
 refer to the operating system name but just with DITA 1.2 support the key will resolve
 to a
 single value.

 Using keyscopes in the DITA Map you can define multiple values for your key depending
 on
 the context:

 <topicgroup keyscope="windows">
 <keydef keys="osName">
 <topicmeta>
 <keywords>
 <keyword>Windows</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <topicref href="installation.dita"/>
 </topicgroup>
 <topicgroup keyscope="linux">
 <keydef keys="osName">
 <topicmeta>
 <keywords>
 <keyword>Linux</keyword>
 </keywords>
 </topicmeta>
 </keydef>
 <topicref href="installation.dita"/>
 </topicgroup>

 You can find a more detailed example and download samples for reuse based on key scopes
 in
 this blog post: DITA 1.3 Key Scopes - Next Generation of Reuse.

 Reuse with Branch Filtering

 With branch filtering you can combine two profiles of the same DITA Map in a larger
 publication.

 Creating a Phones Catalogues publication

 If you already have a DITA Map from which you can obtain publications for various
 mobile
 phone versions based on the profiling filters applied to it, you can use branch filtering
 to
 create a larger publication which incorporates the publications for all mobile phone
 versions:

 ….................
 <topicref href="phoneDetails.ditamap" format="ditamap">
 <ditavalref href="ditaval/X1000Branch.ditaval">
 <ditavalmeta><dvrResourceSuffix>1</dvrResourceSuffix></ditavalmeta>
 </ditavalref>
 </topicref>
….......................
 <topicref href="phoneDetails.ditamap" format="ditamap">
 <ditavalref href="ditaval/X2000Branch.ditaval">
 <ditavalmeta><dvrResourceSuffix>2</dvrResourceSuffix></ditavalmeta>
 </ditavalref>
 </topicref>
…...................

 You can find a more detailed example and download samples for reuse based on branch
 filtering
 in this blog post: DITA 1.3 Branch Filtering - Next Generation of Reuse

 Reuse non-DITA resources

 Besides DITA topics you can reuse other resources in your DITA project:

 	Reuse images either referenced directly or via a key reference.

 	Reuse other linked resources (like videos, PDFs and so on).

 As binary resources are not embedded in the DITA topics, they are naturally reused
 by being
 kept in separate files and linked when necessary.

 [image: ../images/image9.png]

 You can reuse images and link to other resources either via direct references or via
 indirect
 key references. What to choose may depend on how many times you refer to a certain
 image or
 binary resource. If you refer to it only once or twice you can use direct referencing.

 If you have problems getting images to appear the same size when published to PDF
 and
 XHTML-based outputs you should make sure they do not have the dots-per-inch information
 saved
 inside them: https://www.oxygenxml.com/doc/ug-editor/topics/stretched-images-pdf-output.html.

 Conclusions

 The DITA standard can provide for you quite a large toolbox for reuse scenarios.

 Besides the tips which are spread during this tutorial here is some additional advice
 for
 you:

 	Know a little bit about all these possibilities (at least know that they exist), you
 never know when one of them might come in handy.

 	For any given potential reuse situation you may find out that you can use multiple
 reuse
 strategies. So at a given time you could reuse a piece of simple text either via direct
 conrefs, indirect conkeyrefs or keyword keyrefs. Choosing one of the strategies will
 depend on the situation. For example if you plan in the future to also have inline
 elements in the reused text, you should go with either conref or conkeyref. If you
 reuse
 that content only in one or two places you can go with conref. But if you reuse it
 extensively you can define a key and use conkeyref.

 	Try to keep the reused content separately, in special folders. Writers will know that
 when they are editing resources from these special folders they might modify content
 which
 is potentially used in multiple places.

 	If you plan to translate your content to other languages try not to reuse inline
 elements (other than product name and constants which do not change when translated).
 Usually the translators need to translate entire block level-elements in order to
 have a
 good flow of translated content. The DITA 1.3 specs contains quite an useful
 recommendation for this: https://www.oxygenxml.com/dita/1.3/specs/index.html#non-normative/elementsMerged.html.

 Cross-Book Links

 We use cross-book links in our DITA books, and I wanted to share some of our experiences
 in using them.

 A cross-book link is a link that crosses book boundaries. More specifically,
 it is a link from a topic in one book to another topic in another book. Cross-book
 links are made possible by the introduction of keyscopes in DITA 1.3. For
 more about keyscopes, see the related blog post, DITA 1.3 Key Scopes - Next Generation of Reuse.

 Note:

 References to "book" in this article apply equally to both <map>
 and <bookmap> maps.

 To define a cross-book link, two components are needed:

 	

 In the source book map, a peer map reference defines a keyscope for
 each target map that might be referenced by a cross-book link:

 <map>
 <title>Book 1</title>
 <mapref href="book2.ditamap" keyscope="book2" processing-role="resource-only" scope="peer"/>
 ...
 </map>

 In DITA, a peer map is a map that exists alongside your current map. It is a
 declaration of another map's existence, but not an inclusion of that map
 for processing or publication.

 	

 To create a cross-book link in a source book topic, use a keyref
 (key-based) reference to the target topic that includes the keyscope prefix for
 the target book:

 <xref keyref="book2.topic2">topic 2</xref> 

 The following example shows a simple case with two books, each containing a topic
 that
 references a topic in the other book:

[image: ../images/cross_book_links_1.svg]

 Note: The figures in this article omit
 processing-role="resource-only" from <mapref
 scope="peer"> elements for brevity. Although the DITA-OT implicitly treats
 peer map references as resource-only by default, we do explicitly define their
 processing role in our books.

 Cross-book <xref> elements must explicitly contain their target text
 inside them. Although Oxygen automatically resolves and displays cross-book link target
 text during authoring, the DITA-OT does not resolve or include the target text during
 publishing (because peer maps are not processed). As a result, you must manually include
 the target text inside cross-book link elements.

 Oxygen provides good support for creating cross-book links in its authoring environment.
 You can create cross-book links in two ways:

 	

 Choosing a scoped key from the Cross reference insertion
 dialog box

 	

 Doing a drag-and-drop operation from the source book in the DITA Maps
 Manager view into the topic editing window

 	

 Doing a Copy of the target topic's
 <topic> element, then a Paste special > Paste as link where you want the link

 After you create the link, check that the @keyref value uses the
 expected keyscope value. If not, check that the map context in the DITA Maps
 Manager is set to the source map so that the link is created within the
 correct source context. This can be done either by setting the context drop-down to
 <Current map> and ensuring that the source map tab is
 selected, or by explicitly setting the context drop-down to the source map (but remember
 to change it back if you do this).

 An interesting cross-book link problem occurred when we started reusing topics across
 books. We encountered a case where (1) multiple books reused the same topic, and (2)
 that topic had cross-book links to topics in those books:

[image: ../images/cross_book_links_2.svg]

 In this example, the shared.dita topic is included in both book1 and
 book2, and it contains references to other topics in those books. The link to
 book1.topic1 was broken for the topic instance in book1 (because
 book1 had no knowledge of a "book1" keyscope), but the same link worked
 for the topic instance in book 2 (because book2 had a "book1" peer map
 keyscope defined). A similar issue happened for the link to
 book2.topic2 in book2.

 The solution was to define local map-level keyscopes for book1 and book2:

[image: ../images/cross_book_links_3.svg]

 This allowed keyscoped links in reused topics to always resolve properly, whether
 they
 pointed to a topic in the same book or a peer map book.

 Note:

 If you use local map-level keyscopes, be sure to use Oxygen 24.0 or later to author
 your content. It contains some fixes to create cross-book links properly in locally
 keyscoped map contexts.

 If you use cross-book links, it is important to understand how the DITA-OT handles
 them.
 When a book containing cross-book links is published by itself, the cross-book link
 elements are accepted syntactically, but during processing they become unresolved
 links
 because the target peer maps are not processed. To fix the links, you can run some
 kind
 of post-processing utility on the final set of published content. For HTML-based output
 (such as WebHelp), we use the following utility:

 https://github.com/chrispy-snps/DITA-fix-xbook-html-links

 (We do not yet have a solution for cross-book links in our PDF output, but we plan
 to
 look into it in the future.)

 But, something very interesting happens when these books are published together as
 part
 of a higher-level "collection" map:

[image: ../images/cross_book_links_4.svg]

 Note that the top-level "collection" map includes each book map within its relevant
 keyscope. As a result, links that were "cross-book" in the individual maps automatically
 resolve and become local links in the higher-level collection map! And because these
 links resolve during publishing, no post-processing is needed.

 Note:

 When a keyscoped <mapref> points to a map that has its own local
 map-level keyscope, the keyscopes are not cascaded. Instead, a single keyscope with
 the union of keyscope values is used, so that any keyscope in the union can be used
 to reference into the map. For details, see 2.3.4.2 Key scopes.

 This demonstrates a very useful aspect of keyscoped links between books—links
 automatically become cross-book or local as needed, depending on what is included
 in
 publishing. This gives you the freedom to publish books individually, in a single
 collection, or in multiple collections. And you can even rearrange books across
 collections, all without having to modify any links in the DITA source.

 	
 DITA XML vs Markdown Syntax and Capabilities Comparison

 The following article is a comparison between the DITA XML standard and Markdown.
 The
 comparison attempts to cover syntax specification and features. I attempted to write
 this comparison without any implicit bias towards one or the other. If there are DITA
 XML or Markdown features that I missed, that was done out of ignorance and not out
 of
 malice. Feedback is always welcomed, as usual.

 DITA XML vs Markdown

 	

 	DITA XML

 	Markdown

 	Short description

 	DITA XML is a standard for
 designing, writing, managing, and publishing information. There are
 multiple versions of the DITA standard, the most popular one being
 version 1.3.

 	Markdown is a lightweight markup language
 that you can use to add formatting elements to plain text documents.
 There was an effort to standardize Markdown to a specification named
 CommonMark. There are lots of Markdown flavors and
 extensions, most of them sharing a common set of features. The most popular are probably CommonMark and
 Github-flavored Markdown.

 	Why should I use this
 format?

 	

 	You work (or want to work) for a company which manufactures
 similar products (large possibility of content reuse).

 	You want to obtain multiple output formats (HTML based, quality
 PDF).

 	You want to work with a standard and be able to change tools if
 necessary.

 	You want to impose structural validation constraints on the
 edited content.

 	

 	You work for a company which has mostly one product and
 publishes the documentation mostly on the web.

 	You work with ticketing systems which use Markdown for styling
 content.

 	You produce internal documentation or small articles.

 	Useful resources for learning

 	Resources for learning DITA with Oxygen

 	

 	Basic Markdown
 Syntax

 	Markdown: Syntax

 	Pros

 	

 DITA XML pros and cons

 	OASIS Open standard.

 	Advanced support for content
 reuse either at topic, block, or inline level.

 	Advanced support for filtering (generating multiple similar user guides
 from the same content).

 	Open-source publishing engine with lots of supported output
 formats (some free, some commercial) like HTML5, Windows Help,
 PDF, Word, EPUB, and so on.

 Why use DITA

 Pros and Cons

 	

 Markdown pros and
 cons.

 	Large user base. Familiar to software engineers who use it to
 write issues.

 	Basic syntax, easy to learn.

 	Easier to read without specialized tools.

 	Offline and online free editing tools.

 	For the base syntax, quite easy to edit the content in a plain
 text editor tool.

 	Lots of static web site generator open-source tools like MKDocs or Jekyll.

 	Cons

 	

 	Smaller user base.

 	Harder to learn.

 	XML is more verbose than plain text.

 	Visual editing requires the use of a commercial tool like
 Oxygen.

 	Smaller number of open source tools to generate professional
 looking outputs.

 Pros and
 Cons

 	

 	Not all language features are available in the base Markdown
 "specification". There are various flavors with various syntax
 differences between them and you probably need to pick a flavor
 to use and stick to it.

 	Advanced features like content reuse, for example, are not in
 the base standard but may be implemented with different syntaxes
 for various flavors.

 	Static web site generators are not compatible with each other
 (they have various specific configuration files) or to link
 between files.

 	Not many possibilities to assemble multiple Markdown files and
 publish outputs like PDF or Word, for example.

 	Cannot render complex cell content (multiple paragraphs, for
 example) in table cells or in list items.

 	Cross-Compatibility

 	A DITA Map can refer to a Github-flavored Markdown file
 and the publishing engine can perform a dynamic conversion from Markdown
 to DITA while editing.

 	-

 	Table of contents

 	Gathering multiple DITA topics in a larger publication
 and defining the table of contents is done by using DITA Maps.
 Working with DITA
 Maps

 	CommonMark does not define the possibility to
 create a table of contents or to aggregate multiple Markdown files in
 larger publications.
 Various static web site generators have various
 ways to define table of contents, usually based on Yaml, like
 MKDocs.

 					

 						
 	Validation

 						
 	
 							

 								
 	Validation according to the DITA specification DTDs/schemas done
 									when publishing or when editing.

 								
 	Additional validation can be done with Schematron
 										rules.

 							

 						

 						
 	
 							

 								
 	Usually with Markdown, you can look at a live preview while typing to see that
 everything looks OK.

 								
 	There are various processors that may be used to validate Markdown, for example using a set of JSON
 rules.

 							

 						

 					

 	Publishing

 	

 	The DITA Open toolkit publishing engine
 comes with default support to publish DITA Maps and customize to
 plain HTML5, PDF.

 	There are additional open-source plugins to publish to MS Word
 or EPUB.

 	Other curated open-source plugins are available in the DITA OT plugins registry.

 	Commercial plugins are available to publish to WebHelp output
 like Oxygen WebHelp or
 Fluid Topics.

 	Most publishing libraries rely on the conversion from
 Markdown to HTML.

 	Lots of open-source static web site
 generators.

 	Lots of libraries (Javascript, Java, Python, etc) to convert
 Markdown to HTML.

 	Other conversion types available using Pandoc.

 					

 						
 	Translation

 						
 	There are translation agencies directly accepting DITA XML content or you
 can convert DITA XML to XLiff and use a translation system. Each DITA
 XML topic or map can have an @xml:lang attribute to
 specify the current language in which it is written.
 Translating your DITA Project

 						
 	There are various tools like Simpleen that seem to
 specifically handle Markdown translation.

 					

 	Extensibility

 	

 	Possibility to define a new specialization of the
 DITA vocabulary with new element names.

 	Use the @outputclass attribute value on elements
 to set custom values used when styling the output.

 	Use the DITA <data> element with custom
 names and values and take them into account with publishing time
 customizations.

 	Use the DITA <foreign> element (for
 example, embed HTML inside it
 using a custom publishing plugin).

 	

 	Use HTML elements inside Markdown, for example, when defining
 complex tables or you do not have a Markdown equivalent.

 	Yaml headers.

 								
 	Ability on certain Markdown flavors/extensions to define attributes for
 									each element.

 	Metadata

 	

 	The DITA <prolog> element can contain
 lots of metadata information,
 but not visible in the published output. Example:

 <topic id="topic_wcj_tgy_5wb">
 <title>The Title</title>
 <prolog>
 <author>The Author</author>
 <metadata>
 <keywords>
	<keyword>one</keyword>
 <keyword>two</keyword>
 </keywords>
 </metadata>
 </prolog>

 	The <indexterm> elements are
 also considered metadata, as they are used to generate an index
 table.

 	

 	Sometimes, Markdown files may contain Yaml headers before the
 actual content that define simple keys and values. Example:

title: The Title
author: The Author
keywords: [one, two, three, four]

A Heading
Text body.

 	Content reuse:

 	

 	Key references to re-used product
 names.

 	Content references to re-used elements in
 multiple places.

 	Content reference push to push content in
 multiple places.

 	Code references to
 re-use pieces of code in multiple places.

 	Key scopes and branch filtering to
 re-use the same topics in multiple contexts with different
 content in each context.

 	Re-use a topic in multiple
 places in the publication.

 	No content re-use support is in the standard base.
 Various extensions do exist, for example:

 	Redocly uses HTML
 <embed> tags with references to
 Markdown files to re-use entire chunks of Markdown content
 placed inside a file.

 	Hugo uses special
 notations named shortcuts.

 	Filters

 	You can use profiling attributes in DITA
 XML topics or on topic references in a DITA Map map. By using a single
 DITA Map and filtering it differently, you can obtain multiple
 publications from it.
 For example, for the Oxygen user's manual, we
 obtain lots of distinct publications for "Oxygen XML Editor",
 "Oxygen XML Author", "Oxygen XML Web Author" from the same DITA
 Map.

 	There may be, but I am not aware of such a feature in
 Markdown.

 	Headings

 	

 	DITA topics have a <title> element that
 appears as a heading 1 when published and is also used for the
 <title > element in the published
 HTML document.

 	You can nest topics one inside the other and the generated HTML
 output will have <h2>,
 <h3>, etc for each nested topic,
 depending on the nested depth.

 	You can have <section> elements with
 <title>elements inside a topic (they
 cannot be nested one inside the other).

 <topic id="topic_wcj_tgy_5wb">
 <title>Title1</title>
 <body>
 <section>
 <title>Section 1</title>
 <p>paragraph</p>
 </section>
 </body>
 <topic id="inner">
 <title>Inner topic title</title>
 </topic>
</topic>

 	You can use a number of # characters
 followed by space and text to define a new heading. Headings
 do not necessarily need to be incremental, you can start with heading
 level 2 and then have a heading level
 1.
 # Heading level 1
Heading level 3
Heading level 2
....

 	Block elements

 	There are multiple topic types like
 <concept>, <task>,
 <reference>, and extra topic types can be
 added using a specialization. The basic block elements are
 <topic>, <title>,
 paragraph <p> elements,
 <codeblock>, lists

 , <table>,
 <section>, <fig>,
 
 <xsl:for-each select="//toc:topic">
 <xsl:if test="not(@href = 'javascript:void(0)')">
 <item>
 <title><xsl:value-of select="toc:title"/></title>
 <link><xsl:value-of select="concat('/', @href)"/></link>
 <guid isPermaLink="false"><xsl:value-of select="@href"/></guid>
 <xsl:variable name="ref" select="replace(resolve-uri(@href, base-uri()), '\.html', '.dita')"/>
 <xsl:variable name="date" select="document($ref)/*/prolog/critdates/created/@date"/>
 <xsl:choose>
 <xsl:when test="$date">
 <pubDate><xsl:value-of select="
 format-date(xs:date($date),
 '[F], [D01] [MNn,*-3] [Y] 00:00:00 GMT')"/></pubDate>
 <!-- Format like: Thu, 20 Dec 2022 02:46:11 UTC -->
 </xsl:when>
 <xsl:otherwise>
 <!-- Set some fixed date so that the topic does not appear as new -->
 <pubDate> Wed, 1 Jan 2020 02:46:11 GMT</pubDate>
 </xsl:otherwise>
 </xsl:choose>
 </item>
 </xsl:if>
 </xsl:for-each>
 </channel>
 </rss>
 </xsl:result-document>
 </xsl:template>
</xsl:stylesheet>

 The published output will produce an RSS feed similar to the one here: https://blog.oxygenxml.com/rss.xml. For each
 topic referenced in the feed, a publication date is computed based on its creation
 date
 specified in the
 prolog:
 <topic id="rss_feed_generation">
 <title>...</title>
 <prolog>
 <author>...</author>
 <critdates>
 <created date="YYYY-MM-DD"/>
 </critdates>

 The WebHelp publishing template used for publishing this blog already has a customization
 to create the RSS feed: https://github.com/oxygenxml/blog/tree/master/publishing/webhelpBlogTemplate.

 Using the RSS Feed With Follow.it to Receive New Posts by Email

 Websites such as Follow.it allow you to register a link to your RSS feed and
 produce a small HTML form that can be embedded in your blog. Users who register to
 receive notifications when new posts are available in the RSS feed will receive
 automatic emails.

 Once the RSS feed is available on the website, the following steps can be followed
 to
 integrate with Follow.it:

 	Go to the Follow.it website and add a reference to your RSS feed.

 	On the website, customize the form that will be embedded in your blog HTML
 contents.

 	In the the opt file (inside the Oxygen WebHelp
 publishing template folder), add references to an XML file that contains the
 structure for it to appear after the content of each
 article:
 <fragment file="html-fragments/subscribe.xml" placeholder="webhelp.fragment.after.toc_or_tiles"/>
<fragment file="html-fragments/subscribe.xml" placeholder="webhelp.fragment.after.feedback"/>

 	Create the subscribe.xml file and paste the form HTML
 content created by Follow.it inside it. Make the HTML content
 well-formed.

 Generating Google Structured Data from your DITA tasks

 HTML pages published on the web can contain metadata specified using the Google Structured Data specification. Once such
 metadata exists in an HTML page, the Google search engine can present, for example,
 steps to
 complete a certain task directly in the search page without the need to open the target
 HTML
 page. Below is a set of steps for automatically generating Google Structured Data
 metadata for DITA tasks when publishing DITA content to Oxygen WebHelp Responsive
 output,
 which can be customized using a publishing template mechanism.

 	
 In your DITA project, create a task type of topic with a specific
 @outputclass attribute value to signal that you want the Google
 structured data to be automatically generated for it.

 <task id="task_id" outputclass="google-structured-data-steps">
 <title>My task</title>
</task>
<steps>
 <step>
 <cmd>Step 1 content.</cmd>
 </step>
 <step>
 <cmd>Step 2 content.</cmd>
 </step>
</steps>

 	
 Inside a WebHelp publishing template folder, there is an opt file
 that can contain links to various XSLT stylesheets that are useful for customizations.
 For
 example, we'll add a link to a stylesheet for processing such special tasks and producing
 a special script that contains details for each step.

 <publishing-template>
 <name>.....</name>

 <xslt>

 <extension file="xslt/addGoogleStructuredData.xsl" id="com.oxygenxml.webhelp.xsl.dita2webhelp"/>

 </xslt>
 </webhelp>
</publishing-template>

 	
 Create the addGoogleStructuredData.xsl XSLT stylesheet that
 processes the task contents and adds in the HTML head a script that contains the steps
 in
 Google Structured Data format.

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">
 <xsl:template match="*[contains(@class, ' topic/prolog ')]">
 <xsl:if test="/*[@outputclass='google-structured-data-steps']">
 <xsl:apply-templates select="/*" mode="google-structured-data"/>
 </xsl:if>
 <xsl:next-match/>
 </xsl:template>
 <xsl:template match="*" mode="google-structured-data">
 <script type="application/ld+json">
 {
 "@context": "https://schema.org",
 "@type": "HowTo",
 "name": "<xsl:value-of select="title"/>",
 "step": [
 <xsl:for-each select="taskbody/steps/step">
 {
 "@type": "HowToSection",
 "name": "Step",
 "position": "<xsl:value-of select="position()"/>",
 "itemListElement": [
 {
 "@type": "HowToStep",
 "position": "1",
 "itemListElement": [
 {
 "@type": "HowToDirection",
 "position": "1",
 "text": "<xsl:value-of select="normalize-space(cmd)"/>"
 }]}]}
 <xsl:if test="position() < last()">,</xsl:if>
 </xsl:for-each>
]}
 </script>
 </xsl:template>
</xsl:stylesheet>

 	
 Publish the DITA XML Content to a web site.

 	
 Test your HTML page using the Google Rich Results Tester: https://search.google.com/test/rich-results.

 	
 Once Google indexes your page, google search for it.

 [image: ../images/googleAnswerSteps.png]

 Related tasks

 	Generating Google Structured Data from your DITA frequently asked questions

 Generating Google Structured Data from your DITA frequently asked questions

 HTML pages published on the web can contain metadata specified using the Google Structured Data specification. Once such
 metadata exists in an HTML page, the Google search engine can present, for example,
 lists of
 frequently asked questions directly in the search page without the need to open the
 target
 HTML page. Below is a set of steps for automatically generating Google Structured
 Data metadata for DITA frequently asked questions when publishing DITA content to
 Oxygen WebHelp Responsive output, which can be customized using a publishing template mechanism.

 	
 In your DITA project, create a topic with a specific @outputclass
 attribute value to signal that you want the Google structured data to be automatically
 generated for it.

 <topic id="frequently_asked_questions" outputclass="google-structured-data-faq">
 <title>Frequently Asked Questions</title>
 <body>
 <section>
 <title>How do I register to receive notifications for new blog posts?</title>
 <p>Each blog HTML page has at the end a form in which you can fill your email address if
 you want to be notified when new posts are made.</p>
 </section>
..............

 	
 Inside a WebHelp publishing template folder, there is an opt file
 that can contain links to various XSLT stylesheets that are useful for customizations.
 For
 example, we'll add a link to a stylesheet for processing such special DITA topics
 and
 producing a special script that contains details for each question/answer pair.

 <publishing-template>
 <name>.....</name>

 <xslt>

 <extension file="xslt/addGoogleStructuredData.xsl" id="com.oxygenxml.webhelp.xsl.dita2webhelp"/>

 </xslt>
 </webhelp>
</publishing-template>

 	
 Create the addGoogleStructuredData.xsl XSLT stylesheet that
 processes the task contents and adds a script in the HTML head that contains the
 frequently asked questions in Google Structured Data format.

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">
 <xsl:template match="*[contains(@class, ' topic/prolog ')]">
 <xsl:choose>
 <xsl:when test="/*[@outputclass='google-structured-data-faq']">
 <xsl:apply-templates select="/*" mode="google-structured-data-faq"/>
 </xsl:when>
 </xsl:choose>
 <xsl:next-match/>
 </xsl:template>

 <xsl:template match="*" mode="google-structured-data-faq">
 <script type="application/ld+json">
 {
 "@context": "https://schema.org",
 "@type": "FAQPage",
 "mainEntity": [
 <xsl:for-each select="body/section">
 {
 "@type": "Question",
 "name": "<xsl:value-of select="normalize-space(title)"/>",
 "acceptedAnswer": {
 "@type": "Answer",
 "text": "<xsl:value-of select="normalize-space(string-join(*[not(self::title)], ''))"/>"
 }
 }
 <xsl:if test="position() < last()">,</xsl:if>
 </xsl:for-each>
]
 }
 </script>
 </xsl:template>

</xsl:stylesheet>

 	
 Publish the DITA XML Content to a web site using the WebHelp Responsive
 transformation.

 	
 Test your HTML page using the Google Rich Results Tester: https://search.google.com/test/rich-results.

 	
 Once Google indexes your page, google search for it.

 [image: ../images/structuredDataFAQ.png]

 Related tasks

 	Generating Google Structured Data from your DITA tasks

 Editing Customizations

 The DITA XML editing features (visual editing, validation, custom actions) can be
 customized by extending and changing the base DITA framework configuration.

 	Startup DITA Project

 	Customizing the DITA Visual Editing Experience

 	Customizing the DITA Framework Using a Framework Extension Script

 How to customize an existing framework (e.g. DITA) using a framework extension script.

 	Controlled Attribute Values for your DITA Project

 	Converting Subject Scheme Map Values to a DITAVAL

 	Converting .xpr Profiling Conditions to Standard DITA Files

 Startup DITA Project

 The Startup DITA Project contents are useful for starting a
 new DITA project with Oxygen XML Editor version 23.0 or newer, using
 collaboration version control systems such as Git or Subversion.

 When the project.xpr is open in the Project
 view, it imposes a custom set of options, as well as an imposed custom DITA
 framework extension.

 Project Structure

 The project contains the following folder structure:

 	custom-settings/frameworks - Contains custom DITA and DITA Map framework
 extensions.

 	custom-settings/learned-words - Contains learned words for the
 English dictionary.

 	filters - This initially empty folder can be updated to contain
 DITAVAL Filter files used to profile
 the DITA content when publishing.

 	images - Contains images used in the DITA project.

 	oxygen-term-checker - Contains a terminology file with an example
 rule.

 	publishing - Contains a DITA-OT project file and a publishing template.

 	reusables - Contains various reusable components. For example,
 in the "reusable_components.dita" topic, you can add various DITA elements (such
 as notes, paragraphs, lists, and list items) that are reused in various places
 in the project. See more about reusing DITA content.

 	topics - Contains all the DITA topics in the project.

 Settings Saved at Project Level

 Most of the preference pages in Options > Preferences can be saved at project level. When the project is open in
 the Project view, the following options are imposed:

 	The Editor / Spell Check
 preferences page is saved at project level with automatic spell checking
 enabled.

 	The Editor / Spell Check /
 Dictionaries preferences page is saved at project
 level and all learned words are saved in the
 custom-settings/learned-words/en.tdi file.

 	The Editor / Edit Modes /
 Author preferences page is saved at project
 level.

 	The DITA / Maps preferences page
 is saved at project level.

 	The Document Type Association preferences page disables
 certain framework configurations that are not useful (e.g. DocBook
 5).

 	The Document Type Association /
 Locations preferences page references two custom
 framework configurations that are described further.

 Framework Customizations

 The editing
 environment for DITA Maps and Topics can be customized by extending
 their current frameworks.

 The framework extension for editing DITA
 Topics is defined in the
 custom-settings/frameworks/dita-extension/dita-extension.exf
 framework script file. You can add your
 own custom actions to the toolbars, menus, or contextual menus, and add, change, or
 remove transformation scenarios or validation scenarios.

 	

 You can customize the existing DITA Topic file templates by
 making changes to the
 custom-settings/frameworks/dita-extension/templates/
 folder.

 	

 The content completion configuration extension file
 custom-settings/frameworks/dita-extension/resources/cc_config_ext.xml
 allows you to customize various aspects of the
 content completion feature.

 	

 You can add custom Schematron validation
 rules in the
 custom-settings/frameworks/dita-extension/resources/customRules.sch
 Schematron file.

 	

 You can also customize the visual
 editing by modifying the CSS
 custom-settings/frameworks/dita-extension/css/custom.css.

 The framework extension for editing DITA Maps is defined in the
 custom-settings/frameworks/dita-map-extension/dita-map-extension.exf
 framework script file and can me customized in
 a similar way. You can customize the existing DITA Map file templates by making changes to
 the custom-settings/frameworks/dita-map-extension/templates/
 folder.

 Renaming/Moving Topics and Other Resources

 The project has a logical folder named Main Files with a reference
 to the main DITA map. This enables the Main Files support in the project,
 allowing you to rename or move files while the references to those files are
 automatically updated.

 Terminology Checking

 For checking terminology, you can use the Oxygen Terminology Checker add-on. You can add
 terminology rules to the oxygen-term-checker folder. For
 example, the Oxygen user manual uses a set of Vale rules to check for common terminology problems.

 Publishing

 You can publish the content of the project.ditamap in two ways:

 	You can open the DITA-OT project file named publish-project.xml
 from the publishing subfolder and two predefined publishing
 scenarios become available. You can read more about DITA-OT project files in the user manual.

 	You can also open the project.ditamap file in the DITA Maps
 Manager view, invoke the "Configure Transformation Scenario(s)" dialog box, and
 in the Project section, there are two predefined transformation scenarios (one
 for WebHelp, the other for PDF) that use the publishing template archived in the
 zip file. This past webinar shows more details
 about creating and customizing a publishing template.

 Starting with Oxygen XML Editor version 24, the Startup DITA
 Project will be available as a new project template in the Project > New Project dialog box. If you want to try it with Oxygen XML Editor version 23
 you should download the project template (.zxpr file) from the project
 releases page and set it as a new document template.

 Customizing the DITA Visual Editing Experience

 The Author visual editing experience in Oxygen is CSS driven. Let's say I have a team
 of writers using Oxygen and they want to visually edit DITA dl elements in a table-like
 layout.

 All the validation, editing and publishing support Oxygen has for a specific XML vocabulary
 is defined in a framework configuration.

 Instead of copying an entire framework configuration folder (such as DITA or
 Docbook), modify and distribute it, you can choose to extend that framework and
 distribute the extension. This way, you will benefit from new functionality added
 to the
 base framework by newer Oxygen versions and still use your customizations.

 The steps
 below describe how an extension of the DITA framework that removes certain elements
 from the content completion list can be constructed and shared:

 	Somewhere on your disk, in a place where you have full write access, create a folder
 structure like: custom_frameworks/dita-extension.

 	In that folder, create a new CSS stylesheet (for example custom.css) that will
 contain your custom CSS
 styles:
 dl{
 display:table !important;
}
dlentry{
 display:table-row !important;
}
dt, dd {
 display:table-cell !important;
 border: 1px solid black;
 padding: 2px;
}

 	In the Document Type Association / Locations preferences page, add the path to
 your custom_frameworks folder in the Additional frameworks directories
 list. Then click Apply in the Preferences dialog box.

 	In the Document Type Association preferences page, select the DITA
 document type configuration and use the Extend button to create an extension for
 it.

 	Give a custom name to the extension (for example DITA - Custom), then change
 its Storage to external, and save it to a path like:
 path/to/.../custom_frameworks/dita-extension/dita-extension.framework.

 	Make whatever changes are necessary to the framework configuration, and in the
 Author tab click the CSS tab and add a reference to your custom CSS. Do
 not set a title for the CSS and also do not check the Alternate checkbox as you
 want your CSS to be applied by default.

 	Click OK to close the dialog box and then either OK or Apply to
 save the changes to the preferences.

 After you perform these steps, you will have a fully functioning framework in the
 dita-extension folder that can be shared with others: Document Type Extension Sharing.

 To check that your framework extension works,
 you can create a new DITA topic and insert a dl element inside it. It should
 now be presented in a table-like layout.

 In order to know which CSS styles
 to override for a specific DITA element, you can right click inside that element in
 the Author visual editing mode and use the Inspect Styles action to see all
 CSS styles defined for it by default. You can also define alternate CSS styles that
 are applied manually by the writer by using the Author toolbar Styles
 drop-down menu.

 Customizing the DITA Framework Using a Framework Extension Script

 How to customize an existing framework (e.g. DITA) using a framework extension script.

 All the validation, editing, and publishing support Oxygen has for a specific XML
 vocabulary is defined in a framework
 configuration. Oxygen comes bundled with such frameworks for popular XML
 vocabularies, such as DITA. A common use case is to make changes to these built-in
 frameworks, to tailor them according to specific requirements.

 A framework extension script is an XML file that defines the changes to perform
 on a base framework. Suppose that you want to make the following changes to the DITA
 framework:

 	Customize the new document templates.

 	Change the Author mode rendering with a new CSS file.

 	Remove the Bold, Italic,
 Underline actions from the Author mode.

 	Add the Insert Note action to the toolbar.

 Creating the Framework Extension Script

 The easiest way to create such a script is to use the New document wizard and choose the
 Extend Framework Script or Create Framework Script template.
 Define it as an extension of the DITA framework through the @base
 attribute. Also, set a high priority, through the
 <priority> element, to make sure the framework will be
 picked in favor of the DITA
 one.
 <script xmlns="http://www.oxygenxml.com/ns/framework/extend"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oxygenxml.com/ns/framework/extend http://www.oxygenxml.com/ns/framework/extend/frameworkExtensionScript.xsd"
 base="DITA">
 <name>Custom DITA</name>
 <description>A custom DITA framework.</description>
 <priority>High</priority>
</script>

 You need to save the script inside a framework directory (the same place as the
 *.framework file). For example, if you save it inside
 .../custom-frameworks/custom-dita/dita-script.exf, then you
 need to add .../custom-frameworks to the Additional frameworks directories
 list.
 Note: Oxygen 23.1 or later will automatically detect
 the script and load the framework. If you want to use the framework in an older
 Oxygen XML Editor version that does not have support for these scripts, you can
 compile the script to obtain the *.framework file by using the
 Compile Framework Extension script action from the
 contextual menu or by running the
 scripts/compileFrameworkScript.bat external tool
 (available in the All Platforms distribution only).

 Customizing the New Document Templates

 The document templates appear when the user
 invokes the New... action. To add a new template, you need to do the following:

 	In the directory where the script is saved, create a new file
 (e.g. templates/My custom topic.dita). The content of the file
 represents the template's content.

 	In the script, specify the new template locations by adding this fragment inside
 the <script>
 element.
 <documentTemplates inherit="none">
 <addEntry path="${framework}/templates"/>
 </documentTemplates>

 Note: In the example snippet above, the @inherit attribute is set to not inherit any of the document templates defined in the base
 framework.

 Changing the Author Mode Rendering With a New CSS File

 The author mode is driven by CSS rules. To add new rules, you need to:

 	Create a new CSS file in the directory where the script is saved. Give it
 a name (e.g. css/custom.css) and, for example, a rule to make
 titles red:
 title {
 color:red;
}

 	In the script, specify the path to the new CSS by adding this fragment inside
 the <script>
 element.
 <author>
 <css>
 <addCss path="${framework}/css/custom.css"/>
 </css>
 </author>

 Removing the Bold, Italic,
 Underline Actions From the Author Mode

 An author action is just a configuration that
 describes which operation to use depending on the context. Each action has a unique
 ID. Suppose that you do not want Bold,
 Italic, and Underline actions from
 the built-in DITA framework because their markup is not semantic. After you
 inspect the actions preferences and we find out their IDs, you
 can filter them from all toolbars and menus by adding this fragment inside the
 <script>
 element.
 <author>
 <authorActions>
 <removeAction id="bold"/>
 <removeAction id="italic"/>
 <removeAction id="underline"/>
 </authorActions>
 </author>

 Adding the Insert Note Action to the Toolbar

 The Insert Node action is already defined in the DITA
 framework, but it is not present on the toolbar. To add it to the toolbar, you need
 to:

 	Go to Options->Preferences, edit the DITA framework, and search in the Actions tab for the Insert
 Node action. Make note of its ID.

 	Edit the framework extension script and put the action in the toolbar by adding
 this fragment inside the <script>
 element.
 <author>
 <toolbars>
 <toolbar>
 <addAction id="insert.note" anchor="paragraph"/>
 </toolbar>
 </toolbars>
 </author>

 Note: In this example, an action is used that is already present on the
 toolbar as an anchor. The new action is added to the toolbar after the action that
 inserts
 a paragraph.

 Related information

 	https://www.oxygenxml.com/doc/ug-editor/topics/framework-customization-script-usecases.html

 	https://www.oxygenxml.com/events/2021/webinar_creating_frameworks_using_an_extension_script.html

 Controlled Attribute Values for your DITA Project

 Frequently when editing DITA content you will feel the need to enforce a controlled
 set of
 values when editing certain attributes. For example you may want to impose that the
 values for
 the @outputclass attribute on the element codeblock are either
 language-xml or language-css. This is useful in order to remind writers that
 any other value will not be interpreted by the build process in a significant manner.

 Oxygen has a couple of easy ways in which controlled values can be imposed for certain
 attributes:

 	You can edit the XML configuration file
 OXYGEN_INSTALL_DIR/frameworks/dita/resources/cc_value_config.xml and provide
 additional entries. In the case of our small example for providing controlled values
 for
 the @attribute the configuration file should contain an additional
 entry:
 <match elementName="codeblock" attributeName="outputclass">
 <items action="addIfEmpty">
 <item value="language-xml" annotation="XML Syntax Highlight"/>
 <item value="language-css" annotation="CSS Syntax Highlight"/>
 </items>
</match>
Besides
 providing a hard-coded list of values the content completion configuration file is
 flexible enough to allow calling an XSLT stylesheet which could retrieve
 those values from other sources (for example via HTTP from an Exist database).

 	Provide those controlled values via a Subject Scheme Map (my favorite). Coming back to
 our example, you can create a small Subject Scheme map with the file name
 controlledValues.ditamap and the
 content:
 <!DOCTYPE subjectScheme PUBLIC "-//OASIS//DTD DITA Subject Scheme Map//EN""map.dtd">
<subjectScheme>
 <subjectHead>
 <subjectHeadMeta>
 <navtitle>Provide controlled attributes</navtitle>
 </subjectHeadMeta>
 </subjectHead>
 <hasInstance>
 <subjectdef keys="languageTypeKey">
 <subjectdef keys="language-xml">
 <topicmeta>
 <navtitle>XML Syntax Highlight</navtitle>
 </topicmeta>
 </subjectdef>
 <subjectdef keys="language-css">
 <topicmeta>
 <navtitle>CSS Syntax Highlight</navtitle>
 </topicmeta>
 </subjectdef>
 </subjectdef>
 </hasInstance>
 <enumerationdef>
 <elementdef name="codeblock"/>
 <attributedef name="outputclass"/>
 <subjectdef keyref="languageTypeKey"/>
 </enumerationdef>
</subjectScheme>
then
 you can refer to it from your main DITA Map
 like:
 <topicref href="controlledValues.ditamap" format="ditamap" type="subjectScheme"/>

 	If the attributes on which you want to impose certain values are DITA profiling attributes, you can go to the
 Oxygen Preferences->Editor / Edit modes / Author / Profiling/Conditional
 Text page and define the set of allowed values for them.

 The only problem with the first approach is the fact that validation will not impose
 those
 values and writers will not receive validation error messages if they set another
 value for
 the specific attribute. So you will probably need to add a Schematron check in order
 to signal
 errors when a certain attribute's value does not match the list of controlled attribute
 values. For both the second and third approaches, validation will warn the writers
 if certain
 attribute values do not match values in the controller values list.

 	Controlled Attribute Values (Part 2 - Advanced)

 Controlled Attribute Values (Part 2 - Advanced)

 As already presented in Controlled Attribute
 Values for your DITA Project, Oxygen allows you to add or replace possible
 values for attributes or elements based on a simple configuration file. A more complex
 scenario is one in which in order to decide which values to provide, you need more
 context information. Let's take this DITA fragment:

 <metadata>
 <othermeta name="name" content="value"/>
</metadata>

 What we want is to offer proposals for @@content but the possible values
 for @@content depend on the value of @@name. We will
 see how we can solve this dependency.

 Note: Starting with Oxygen 17.1 there is a simpler way to achieve the use case
 presented in this post. The contextElementXPathExpression parameter will
 be bound to an XPath expression that identifies the element in the context of which
 the
 content completion was invoked.

 The configuration file

 The configuration file (cc_value_config.xml) allows calling an XSLT stylesheet and that's just
 what we will do:

 <match elementName="othermeta" attributeName="content">
 <xslt href="meta.xsl" useCache="false"/>
</match>

 As you can see, we can't express the dependency between @@content
 and @@name inside the configuration file . I also want to mention
 that because the values for @@content are dynamic, we want the XSLT
 script to execute every time the values are requested (we shouldn't cache the
 results). We enforce this by setting @@useCache to false.

 The XSLT script

 The XSLT script has access to the XML document (through the documentSystemID
 parameter) but it lacks any context information, we can't really tell for which
 <othermeta> element was the script invoked. To counter
 this limitation, we will use Java extension functions and we will call Oxygen's
 Java-based API from the XSLT. Here how it looks:

 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xd="http://www.oxygenxml.com/ns/doc/xsl"
 xmlns:tei="http://www.oxygenxml.com/ns/doc/xsl"
 xmlns:prov="java:ro.sync.exml.workspace.api.PluginWorkspaceProvider"
 xmlns:work="java:ro.sync.exml.workspace.api.PluginWorkspace"
 xmlns:editorAccess="java:ro.sync.exml.workspace.api.editor.WSEditor"
 xmlns:saxon="http://saxon.sf.net/"
 xmlns:textpage="java:ro.sync.exml.workspace.api.editor.page.text.xml.WSXMLTextEditorPage"
 xmlns:authorPage="java:ro.sync.exml.workspace.api.editor.page.author.WSAuthorEditorPage"
 xmlns:ctrl="java:ro.sync.ecss.extensions.api.AuthorDocumentController"
 exclude-result-prefixes="xs xd"
 version="2.0">
 <xsl:param name="documentSystemID" as="xs:string"/>
 <xsl:template name="start">
 <xsl:variable name="workspace" select="prov:getPluginWorkspace()"/>
 <xsl:variable name="editorAccess" select="work:getEditorAccess($workspace, xs:anyURI($documentSystemID), 0)"/>
 <xsl:variable name="pageID" as="xs:string" select="editorAccess:getCurrentPageID($editorAccess)"/>
 <xsl:variable name="name" as="xs:string">
 <xsl:choose>
 <xsl:when test="$pageID='Text'">
 <xsl:variable name="textpage" select="editorAccess:getCurrentPage($editorAccess)"/>
 <!-- In the text page, the context is the @content attribute -->
 <xsl:value-of select="textpage:evaluateXPath($textpage, 'xs:string(./parent::node()/@name)')"/>
 </xsl:when>
 <xsl:when test="$pageID='Author'">
 <xsl:variable name="authorPage" select="editorAccess:getCurrentPage($editorAccess)"/>
 <xsl:variable name="caretOffset" select="authorPage:getCaretOffset($authorPage)"/>
 <xsl:variable name="ctrl" select="authorPage:getDocumentController($authorPage)"/>
 <xsl:variable name="contextNode" select="ctrl:getNodeAtOffset($ctrl, $caretOffset)"/>
 <!-- In the author page, the context is the "othermeta" element -->
 <xsl:value-of select="ctrl:evaluateXPath($ctrl, 'xs:string(@name)', $contextNode, false(), false(), false(), false())[1]"/>
 </xsl:when>
 </xsl:choose>
 </xsl:variable>
 <items>
 <xsl:choose>
 <xsl:when test="$name = 'temperatureScale'">
 <item value="Celsius" annotation="(symbol C)"/>
 <item value="Fahrenheit" annotation="(symbol F)"/>
 </xsl:when>
 <xsl:when test="$name = 'measurement'">
 <item value="Metric" annotation="Metric system"/>
 <item value="Imperial" annotation="Also known as British Imperial"/>
 </xsl:when>
 </xsl:choose>
 </items>
 </xsl:template>
</xsl:stylesheet>

 Converting Subject Scheme Map Values to a DITAVAL

 Suppose you already have a Subject Scheme Map in your project and you use it to
 control attribute values: Controlled Attribute Values for your DITA Project.

 In the Oxygen Colors and Styles preferences page, you can also assign various colors
 and styles to each profiling attribute (name, value) combination. One option for this
 is to
 manually re-add attributes and values in that list. Another option would be to create
 an XSLT
 stylesheet to gather all profiling attribute names and values from the Subject Scheme
 Map and create a DITAVAL file. The stylesheet would look like this:

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">
 <xsl:output indent="yes"/>
 <xsl:template match="/">
 <val>
 <xsl:for-each select="subjectScheme/enumerationdef">
 <!-- For each attribute name -->
 <xsl:if test="subjectdef/@keyref and attributedef/@name">
 <xsl:variable name="attrName" select="attributedef/@name"/>
 <xsl:variable name="keyref" select="subjectdef/@keyref"/>
 <!-- For each key value -->
 <xsl:for-each select="//*[@keys=$keyref]/*//@keys">
 <xsl:variable name="attributeValue" select="."/>
 <prop action="flag" att="{$attrName}" val="{$attributeValue}"/>
 </xsl:for-each>
 </xsl:if>
 </xsl:for-each>
 </val>
 </xsl:template>
</xsl:stylesheet>

 After you obtain the DITAVAL file, you can import it directly in the Colors and
 Styles preferences page. If the DITAVAL file has flagging information, that
 information will be used directly to style each attribute value.

 A possibility to enhance this workaround is to specify profiling styles for each attribute
 value directly in the Subject Scheme map using the <data> element
 like:
 <subjectdef keys="linux">
 <data name="color" value="yellow"/>
</subjectdef>

 in this case the XSLT stylesheet would create the DITAVAL file by picking
 colors directly from the Subject Scheme
 Map:
 ….….…....
<prop action="flag" att="{$attrName}" val="{$attributeValue}">
 <xsl:choose>
 <!-- Here you can also set flagging colors depending on the profiling attribute value -->
 <xsl:when test="data[@name='color']">
 <xsl:attribute name="color" select="data/@value"/>
 </xsl:when>
 </xsl:choose>
</prop>
….….….….
In
 this way, your Subject Scheme Map will keep both the controlled attribute values and
 various colors and styles, which can later be used to create a DITAVAL file and either
 publish with those styles or import the DITAVAL file in Oxygen to highlight certain
 elements with various colors: https://www.oxygenxml.com/demo/Colors_and_Styles_for_Profiled_Content.html.

 Converting .xpr Profiling Conditions to Standard DITA Files

 Profiling Conditions in the Oxygen .xpr Project File

 When we first started using Oxygen and DITA, we defined our profiling conditions in
 the Oxygen .xpr project file:

 	

 Attribute values were defined in Profiling/Conditional Text > Attributes and Condition Sets > Profiling Attributes:

[image: ../images/xpr_values.png]

 	
 Colors were defined in Profiling/Conditional Text > Attributes and Condition Sets > Colors and Styles:

[image: ../images/xpr_colors.png]

 We organized our DITA content into three different Git repositories. The DITA content
 in each Git repository used different profiling conditions. But we wanted to share
 a
 single .xpr file across all three repositories, so we defined
 all profiling conditions in that file.

 Storing profiling conditions in a shared .xpr file caused some
 issues:

 	

 Writers were shown profiling conditions from other repositories that were not
 relevant to them.

 This was okay in the beginning because we did not have many profiling
 conditions. But over time, the number of profiling conditions increased as
 we increased content reuse and converted more content to DITA.

 	

 It was time-consuming to add or update profiling conditions.

 Writers are not permitted to modify our .xpr file, so I
 needed to understand and implement each new condition. Then I had to roll
 out the updated .xpr file to all three Git repositories
 (and sometimes to multiple branches in a repository).

 	

 Color definitions could become desynchronized.

 Colors were defined in two places—in the .xpr file for
 the Oxygen UI and in DITAVAL files for transformations—and I needed to
 remember to update the colors in both places.

 Oxygen supports DITA subject scheme files for defining
 profiling condition attribute values in a DITA-standard way, so we started
 using them. This allowed writers to add or update attribute values, which was a step
 in the right direction. But I still needed to update and distribute the
 corresponding colors in the .xpr file.

 When we decided to add a fourth Git repository that required many new profiling
 conditions, we decided we needed a better approach. And fortunately the Oxygen v26.0
 release saved the day with a solution.

 Profiling Conditions in Standard DITA Files

 The Oxygen v26.0 release provides a new feature that allows profiling condition
 colors to be loaded dynamically from DITAVAL files:

[image: ../images/automatically_apply_ditaval.png]

 In previous versions, Oxygen could statically import colors from DITAVAL files into
 the .xpr file, but that did not resolve the fundamental
 challenges with a shared .xpr files described above.

 With this new feature, Oxygen loads the color definitions directly from the DITAVAL
 files in the Main Files list when you open a DITA map or
 topic.

 Now we can define profiling conditions entirely with standard DITA files, with no
 product-specific information needed in the .xpr file:

 	

 Attribute values are defined by DITA subject scheme files

 	

 Attribute colors are defined by DITAVAL files, for both editing and
 publishing

 Finally, profiling condition updates are completely self-service for writers! They
 can freely add or update profiling condition values or colors as they want.

 What Are DITA Subject Scheme Files?

 A DITA subject scheme file is a specialized type of DITA map file that
 can constrain attributes and elements to particular defined values. It is included
 as a submap in a DITA content map. In this case, we can use it to constrain
 profiling attributes.

 Subject scheme maps accomplish this task in two steps:

 	

 A <subjectdef> element defines a set of values for a
 subject.

 	

 For example, a subject could be a product family, and its values are
 variants within that product family.

 	

 An <enumerationdef> element binds the values for one
 or more subjects (products) to the attribute specified by
 <attributedef>.

 In our environment, we keep a centralized set of value definition files in a
 "warehouse" folder:

[image: ../images/subjectschemes_distributed.svg]

 DITA subject scheme structures might seem intimidating at first. However, they can
 be
 easier to understand when populated with attributes and values that are familiar to
 you.

 Converting .xpr Profiling Conditions With Refactoring

 To make it easier to move from .xpr-defined profiling conditions
 to standard DITA profiling conditions, I created a refactoring operation that
 processes an input .xpr file as follows:

 	

 Converts profiling condition value definitions to DITA subject scheme
 files

 A profiling.ditamap file is created that can be
 referenced by DITA content maps.

 	

 Converts profiling condition color definitions to a single
 all_colors.ditaval file

 This file can be added to the Main Files list defined
 in the Oxygen .xpr project file. Although the color
 definitions might change over time, the file location does not, and so no
 changes are needed to the .xpr file.

 	

 Removes the converted value and color definitions from the input
 .xpr file

 You can use the following test case to experiment with this refactoring
 operation:

 converting_xpr_profiling.zip

 The oxygen.xpr file in the test case contains profiling
 conditions that you can convert to DITAVAL and DITA subject scheme files:

[image: ../images/convert_xpr_profiling_to_dita_preview.gif]

 To try the refactoring operation,

 	

 (Optional) Create a backup copy of the .xpr file.

 The refactoring operation removes converted profiling conditions from the
 input .xpr file, so you might want to save a copy of
 the original file.

 	

 Open the .xpr file in an Oxygen editing window.

 Locate the .xpr file in the Project view, then
 right-click it and choose Open with > Internal editor. When prompted for the format, accept the default of
 XML Document.

 	

 Run the refactoring operation on the file.

 In the editing window, right-click and choose Refactoring > Profiling conditions > Convert .xpr profiling conditions.

 	

 In the configuration dialog, specify how to perform the conversion:

 	

 For Attributes to convert, specify the
 space-separated list of profiling attributes to convert.

 	

 For When writing <subjectScheme> files,
 specify how to distribute the value definitions
 (<subjectdef>) and attribute bindings
 (<enumerationdef>) across one or more
 subject scheme files.

 For example, if you are using profiling attribute groups
 (the testcase uses groups for the @product
 attribute), having each group defined in its own
 <subjectdef> file can help different
 writers track their own changes over time in Git.

 	

 Click the Preview button to preview the operation,
 then complete the refactoring operation.

 	

 Add the oxygen.xpr-profiling/ folder to the
 Main Files list.

 Right-click the folder in the Project view, then
 choose Add to Main Files.

 	

 Configure Oxygen to dynamically load colors from the newly created DITAVAL
 file.

 In Profiling/Conditional Text > Attributes and Condition Sets > Colors and Styles, enable the Automatically apply colors and
 styles... checkbox.

[image: ../images/automatically_apply_ditaval.png]

 The newly created profiling.ditamap file defines all profiling
 condition values. If a particular DITA map needs only some conditions, you can
 create a map-specific copy of the profiling.ditamap file that
 binds only the values of interest. In our environment, we use the convention of
 mapdir/profiling.ditamap, keeping
 the same "profiling.ditamap" file name but placing it inside
 the relevant map content folder.

 To create a map-specific copy of profiling.ditamap in the test
 case,

 	

 Perform the conversion as described above.

 	

 Copy the profiling.ditamap file from the
 oxygen.xpr-profiling/ folder to the
 my-map/ folder.

 	

 Open the newly copied my-map/profiling.ditamap file and
 fix any <schemeref> references to
 *-subjectdefs.ditamap files.

 This step is only necessary if you configured the refactoring operation to
 create "two" or "many" <subjectScheme> files.

 	

 Add a map reference to the map-specific profiling file.

 Open the my-map.ditamap file in the DITA Maps
 Manager, then add a map reference to the
 my-map/profiling.ditamap file.

 Related information

 	Controlled Attribute Values for your DITA Project

 Other

 Oxygen XML As a Technical Documentation Solution FAQ

 This topic covers some of the most frequent questions we get from technical
 documentation writer teams willing to investigate the Oxygen XML set of tools as a
 possible solution for writing and publishing content.

 	What does Oxygen XML provide as a tool to a technical documentation team?

 	

 Oxygen is a DITA XML desktop editing tool that can be used by
 technical documentation writers to write, reuse, and
 publish DITA XML content to a variety of output formats, such as
 WebHelp Responsive and PDF.

 Some of our strong capabilities are listed here.

 	To which companies would you recommend a DITA XML based solution for writing
 technical documentation?

 	I would recommend the use of the DITA XML standard for writing technical
 documentation with Oxygen XML as an editing tool to companies that have one of
 the following conditions fulfilled:

 	They have multiple similar products and want to take advantage of DITA
 XML high reuse capabilities and condition profiling/filters to produce
 multiple similar, but not identical, manuals from the same project.

 	They want to add structure-based validation rules that must be followed
 by all members of a team.

 	They want to create their own custom vocabulary of semantic
 elements.

 	Besides web-based outputs, they also want to produce PDFs and want to
 have a relatively high degree of control over the PDF
 customization.

 More details here: Types Of Companies Who Would Benefit From Using the DITA XML Standard.

 	Is Oxygen a Content Management System?

 	

 Oxygen is not a content management system, we do not store the
 content that you are editing on our side.

 Our clients use Oxygen XML for collaboration on a technical
 documentation project in one of these ways:

 	We have clients who use Oxygen's Git client add-on to
 collaborate on the same project using a Git
 repository.

 	Oxygen also has built-in support for working with SharePoint repositories
 if you want to store the edited content on SharePoint.

 	There are commercial CMSs (content management systems) that have
 integrations with Oxygen. Some of them are listed here. These commercial content
 management systems such as Astoria, Bluestream,
 Componize usually have plugins that allow Oxygen to
 connect to the CMS remote storage, open documents, edit and save
 them back. But the price of the commercial content management systems is
 separate from the price of an Oxygen license.

 	What Oxygen products should I buy for our technical documentation team?

 	All of our prices are transparently available here.
 The usual purchase suggestion for a technical writer's team
 is something like this:

 	

 One permanent user-based license of Oxygen XML Editor
 Professional: https://www.oxygenxml.com/buy_new_licenses_professional_smp.html.

 This one license would be for the person who is in charge of
 customizing the published output as well as writing content.

 	

 A permanent license of Oxygen XML Author professional for each
 full time tech writer: https://www.oxygenxml.com/buy_new_licenses_author_professional_smp.html.

 The Oxygen XML Author allows writers to visually edit
 DITA XML content and to publish it to WebHelp,
 PDF, and other formats.

 	

 Any other occasional contributor or reviewer (subject matter
 experts or engineers, for example) can use our Content Fusion
 platform to give feedback on the content directly from a web
 browser.

 A video of how Content Fusion Works: https://www.oxygenxml.com/content_fusion/take_a_tour.html.

 And the pricing, depending on the number of people who would
 simultaneously review the content: https://www.oxygenxml.com/content_fusion/buy_content_fusion.html.

 	What type of customer support and training will I get from the Oxygen team?

 	

 We help customers with advice and any problems they encounter when using our
 application.

 For example, if you want to create your own publishing customizations, these
 are usually done using CSS. You would have one colleague on your side
 creating the customization and asking us questions along the way. We do not
 implement full customizations for you, but we guide you along the way.

 As for training, we have lots of videos and online resources for learning to
 use Oxygen to produce technical documentation: Resources for learning DITA with Oxygen.

 We can offer you a one-time web meeting to show you how Oxygen works in
 general, but if you want a more rigorous training, we have partners like
 Ryffine or Mekon who offer such courses: Courses for learning DITA with Oxygen XML Editor.

 	How can I convert my current content to DITA XML?

 	You can find advice about how to convert various document formats to DITA XML
 here. For any other document format,
 the advice is to possibly try to export it to HTML content and then use the free
 Oxygen Batch Documents Converter add-on.

 	Do you have case studies or references from companies who are successfully using
 Oxygen?

 	Some of our customers who have agreed to be officially listed are mentioned
 here: https://www.oxygenxml.com/customers.html.

 	Also some testimonials: https://www.oxygenxml.com/case_studies.html.

 DITA For Small Technical Documentation Teams

 There are many cases in which a handful of technical writers in a company need to
 collaborate on a DITA project and they may not have the resources to invest in an
 open
 source content management system. So this blog post is about setting up a viable,
 cost
 efficient DITA documentation editing and publishing solution which can scale up (both
 in
 number of writers and content) using Oxygen XML Author and Github. As a
 showcase for the proposed solution we will have the Oxygen XML
 Blog.

 Overview of Tools Proposed for the Solution

 The following list of tools and application will be used in our solution:

 	Content Management and Workflow

 	Github for storing the DITA content.

 	Github for creating and managing issues.

 	Editing

 	Oxygen XML Author for editing the DITA content
 and for offline publishing.

 	[Optional] Oxygen Web Author for online
 editing/reviewing of DITA content.

 	Review

 	[Optional] Oxygen Content Fusion for creating
 review tasks for subject matter experts.

 	Publishing

 	Oxygen XML Author for publishing from inside the
 application.

 	[Optional] Oxygen Publishing Engine for
 publishing to PDF and WebHelp DITA content on an integration server.

 	[Optional] Oxygen WebHelp Feedback engine for
 embedding feedback forms in the HTML pages.

 	[Optional] Gradle to script the publishing in preparation for an
 integration server.

 	[Optional] Netlify to build and host a web site for the
 DITA content.

 	[Optional] Oxygen Validate and Check for
 Completeness used with a scripting license to check for
 validation problems on an integration server.

 The same set of tools has been used for editing and publishing the Oxygen XML Blog:
 Welcome!.

 Learning DITA

 There are various online resources for learning DITA, there are also learning DITA
 courses held by consulting companies. This older blog post has some useful links:
 Resources for learning DITA with Oxygen.

 Project Storage - Using GitHub

 You need a system to:

 	Store your DITA content.

 	Collaborate with your colleagues on writing content in the same project.

 	Allow for reviewers to propose changes without having the right to commit
 changes.

 	Have a history of changes on each DITA resource, being able to revert to
 previous versions of topics.

 	See who changed what content in each DITA topic and map.

 	Be able to tag releases so you can build manuals for older releases with
 some changes applied to them.

 	Maintain a list of issues which are closed as your work progresses.

 Some small teams instead of using a version control system resort to shared network
 drives. Shared network drives do not address all the features above and they are
 dangerous in the fact that you can overwrite other people's work and there is no way
 to revert changes.

 A free Github
 account can cover all these use cases listed above. GitHub exposes through a web
 interface access to a Git repository. This blog post is not about learning Git, it's
 about having minimum Git skills to get you started. There is a good book about
 learning Git Here: https://www.manning.com/books/learn-git-in-a-month-of-lunches.

 We'll outline below some steps to get you started with a GitHub project:

 	Create a GitHub account: https://github.com/join.

 	Create a new public or private repository in the organization for your
 project.

 	Create an organization: https://github.com/settings/organizations. The organization will be useful to group
 work-related projects. For adding private repositories in an organization
 you will need to switch to a paid plan.

 	Add your team members to the organization. Using the team member GitHub user
 names you can send them invitations to be contributors to the project.

 Creating and Modifying Content in the Repository

 You can create and edit DITA topics in a number of ways:

 	Edit topics offline and use GitHub's user interface to upload them, or
 modify existing topics using GitHub's web interface.

 	Use the Oxygen Web Author to connect to
 the Git Repository and create a new topic or modify an existing one.

 	Clone the repository to the local file system using Oxygen XML Author with
 the Git Add-on installed.

 Using Oxygen XML Author to Create/Modify Content in the Repository

 	Install the Git Add-on in Oxygen XML
 Author.

 	Open the Git Staging view and use the
 + toolbar button to paste the reference to the
 reference to your project, for example
 https://github.com/oxygenxml/blog.

 	Choose a location on the local drive where the project will be cloned.

 	The Git Staging view does not show all existing
 resources in the project, it will just show the modified resources, so go to
 the Project menu and create a new Oxygen project in
 the folder where the project was cloned.

 	In the Git Staging view the newly created
 project.xpr should now appear. Select it, use the
 Stage Selected button to stage it, then write a
 commit message and use the Commit message to commit
 it. Now the file is committed in your local repository. You can use the
 toolbar Push button to push it to the GitHub
 account.

 	Create a DITA Map and a couple of topics
 using Oxygen's Project view.

 	Using the same Git Staging view you can see the newly
 added files, stage, commit and push them to the remote GitHub repository.
 You can check on the remote GitHub repository that the files were
 updated.

 	If changes are made by someone else using the same technique or if changes
 to maps and topics are made directly from the GitHub web interface or
 from the Oxygen WebAuthor, the Git Staging view has a
 Pull toolbar button allowing you to obtain those
 changes locally.

 	On resources which have been modified a number of times you can right click
 in the staging area and choose Show in history to see a history of
 changes. You can also choose Show blame to see who modified each of
 the lines in the document.

 Here's a simplified overview of how you could work with Oxygen and Git:

 	Every time you start Oxygen or every time before you commit use the
 Pull toolbar button from the Git
 Staging view to get changes locally.

 	Stage and commit your changes, then push them to the remote repository.

 	If you attempt to pull changes including a file which is already modified
 locally by you, the pull operation will not succeed. You will need to copy
 that file separately, pull the content from the server and then compare your
 changes to the ones coming from the server and merge your changes.

 	If you have already committed to your local repository a resource modified
 also on the remote repository, you have a conflict, the Git Staging
 view allows you to edit the conflict, merge the changes locally and then
 commit to the local repository and push changes to the server.

 	You do not have to pull and push changes from and to the remote repository
 very often, you can continue working with your local repository for days and
 push all changes at the end but not pulling changes from the server often
 might result in various conflicts if the same resources are modified both on
 the server and in your local repository.

 Organizing Your Project Structure using the Master Files Support

 You can now start to organize your content. The Oxygen user's manual contains
 a Getting Started guide for DITA
 editing.

 You can right click the Project root and enable main files, then in the
 Main Files folder add a reference to the main DITA map
 (or maps). All refactoring operations (move resources to subfolders, rename topics
 or resources) will properly update references in the entire DITA project hierarchy.
 A minimal DITA project would probably contain:

 	One or more main DITA Maps.

 	One or more DITA submaps, defining keys for reusable content.

 	One or more folders containing reusable DITA elements.

 	A folder containing one or more DITAVAL filter files.

 	A folder containing images or binary resources.

 Overall management of the DITA project

 	The Search References contextual menu actions from the DITA Maps
 Manager and from the main editor allow you to check where a topic, map or image is
 being
 used.

 	The Remove from disk action in the DITA Maps Manager view will warn
 if the removed topic is used in multiple places.

 	Validation errors are issued for references to missing topics or images.

 	Move/Rename actions located both in the Oxygen Project and DITA Maps
 Manager view allow you to move topics/maps or images and have references to them automatically
 updated.

 	Search for references to IDs or rename IDs in the entire project.

 	The Find unreferenced resources contextual menu action in the DITA
 Maps Manager allows you to find orphan topics or other resources (images, etc).

 	You can define profiling condition sets and use them to see in the editing area what
 content is filtered, then use the same profiling condition sets for publishing.

 	The Open/Find Resource side view allows you to locate files by
 content.

 	The change tracking support in Oxygen allows you to make changes with change tracking
 or to
 add or reply to existing comments.

 You can find out more DITA editing tips in the DITA Editing Tips And Tricks
 blog.

 Sharing Common Settings using the Project

 The Oxygen project configuration can save various sets of global options at project
 level. As an example:

 	Go to the Oxygen Preferences->Editor / Spell Check
 page and change the radio button at the bottom to Project
 Options. Then check the Automatic spell
 check checkbox.

 	The Git Staging view should have a modified version
 of the XPR showing as modified, stage, commit and push it.

 	Now everybody using the same project.xpr project file
 loaded in Oxygen will have spell check enabled.

 Other useful settings you could switch to Project Options:

 	The Project Level Settings preferences dialog allows
 you to control if various settings are saved at project or global level. For
 example you can save the Validate and check for
 completeness settings at project level and share them with
 others.

 	The Editor / Spell Check / Dictionaries preferences
 page can contain your own set of dictionary terms.

 	The Document Templates preferences page allows you to
 use your own custom new file templates.

 	In the Editor / Save preferences you can save at
 project level various save options.

 	Switching the Menu Shortcut Keys preferences page to
 project level allows you to share with others custom menu shortcut
 keys.

 You can use the ${pd} editor variable to refer to resources located in
 the current project folder. You can read more about editor variables here.

 Manual Publishing

 You can open DITA Maps in the application DITA Maps Manager view and publish
 them to various outputs using the Configure Transformation Scenarios toolbar
 button. A transformation scenario can also specify a DITAVAL filter, parameters and
 can be saved at project level. The published content can be later uploaded to a web
 server.

 For WebHelp output you can create a publishing template containing custom
 CSSs, headers, footers and logos. The publishing template can be saved in the
 project and referenced from the transformation scenario.

 For the PDF output the same publishing template can be used. To build your
 custom CSS you can use the Oxygen Styles Basket online CSS-builder.

 If you are publishing multiple DITA Maps or you have multiple filters or multiple
 deliverable formats you may want to create a DITA Open Toolkit project file: https://www.oxygenxml.com/doc/ug-editor/topics/dita_open_toolkit_project.html. A sample DITA OT project file can be found in
 the Oxygen XML Blog project on GitHub.

 Working with Branches

 You may need to mark releases of your product and also to be able to contribute small
 fixes to those releases. So here's how you work with branches:

 	The default branch in the project is called master and this is the
 branch we've been working until now.

 	Using GitHub's web interface you can create your own branch.

 	Check out again in the Git Staging view the project,
 this time with the separate branch in a separate folder.

 	Open the project.xpr from that branch's checkout, make
 changes to the content there, stage, commit and push as usual.

 Establishing a Workflow

 You can use the GitHub issues list for your project to create new issues. You
 can attach files to the issue, assign the issue, discuss with other participants,
 register to watch particular issues. Once a commit is made with a particular
 #issue_number, the issue will get an automatic link pointing to the
 commit.

 Inside an organization or inside a repository you can create project boards. A project board can define
 states for your issues. When an issue is opened it can be assigned to a certain
 project board. It can also be assigned various labels. Issues can also be assigned
 to various people in your team.

 Oxygen's change tracking support allows you to
 insert or delete content with change tracking or to make comments on content. The
 Web Author online editing tool allows you to also make changes with change
 tracking.

 The Oxygen Content Fusion add-on allows you to create review
 tasks and to allow subject matter experts to give you feedback on DITA content
 directly from a web browser.

 Adding Custom Validation Checks to the Project

 There are a couple of ways in which you can add custom validation checks to your
 project:

 	You can create a custom Schematron schema containing custom validation
 rules: Sharing Schematron Validation Rules.

 	The Validate and Check For Completion action from the DITA Maps
 Manager view contains various settings which can be saved at project
 level. In the Preferences->Project Level Settings page there is a
 Save DITA Map validate and check for completeness settings at project
 level checkbox.

 	You can also add terminology checking in the application: Checking Terminology with Oxygen XML Editor.

 	In GitHub projects you can configure custom actions and
 						run validate and check for completeness with a special scripting license on pull requests. An
 						example for such a validation action is in the Oxygen XML Blog: https://github.com/oxygenxml/blog/blob/master/.github/workflows/workflow.yml. The validation runs on any opened pull
 						request: https://github.com/oxygenxml/blog/pull/25.

 Adding Custom Actions

 You can use a framework customization saved at project level to add custom actions
 which can be used in the Author visual editing mode and can be mounted in the
 toolbar, menus and the content completion window: Implementing a Custom Author Action to Split a Table.

 Dynamic Publishing using an Integration Server

 Using a bit of scripting you can publish the modified content on the fly with either
 using free online services like Netlify or Travis or using an internal Jenkins
 server. The Oxygen XML Blog is an example for this.
 It has a Gradle script which is run as part of a Netlify account whenever changes
 are made to the topics.

 Translating your content

 The Oxygen Translation Package Builder add-on allows
 you to find the changed resources in a DITA project and then to pack those changed
 resources and send them for translation. It also helps with integrating the received
 translation in the project. This blog post has more details and useful links about translating DITA
 projects.

 Related information

 	Webinar: Using DITA for Small Technical Documentation Teams

 Using Git For Technical Writing

 	
 	

 The Git version control system is a feasible solution for working and
 		collaborating on technical documentation projects regardless of their scale and
 number of
 		resources.

 		
 In this blog post, we'll look into why technical writers should use Git and how various
 			technical writing workflows can be accomplished using the Git distributed version
 			control system.

 		
 Definition of Git taken from Wikipedia:

 "Git is a distributed version control system that tracks changes in any set of
 			computer files, usually used for coordinating work among programmers collaboratively
 			developing source code during software development. Its goals include speed, data
 			integrity, and support for distributed, non-linear workflows (thousands of parallel
 			branches running on different systems). (wiki)."

 		
 So, since Git was originally intended for developers, why did technical writers start
 using it
 			and why is it a good idea for technical writers to use it?

 		
 The following small articles cover various aspects of a technical documentation solution
 using
 				Git:

 				
 	Advantages of Using Git

 				
 	Disadvantages of Using Git

 				
 	Useful Resources

 				
 	Applications for Working with Git

 				
 	Typical Editing Session

 				
 	Validation

 				
 	Common Workflows

 				
 	Propose Changes

 				
 	Handling Translations

 				
 	Sharing Common Settings

 				
 	Publishing Content From Git

 			

 	Advantages of Using Git

 	Disadvantages of Using Git

 	Useful Resources

 	Applications for Working with Git

 	Typical Editing Session

 	Validation

 	Common Workflows

 	Propose Changes

 	Handling Translations

 	Sharing Common Settings

 	Publishing Content From Git

 Advantages of Using Git

 	

 	

 		
 	Git as a version control system is present in most software development companies.
 In my
 				opinion, knowing Git is a nice asset for any technical documentation writer to
 have
 				in their resume.

 		
 	Free and stable system, used by many, with relatively few bugs, has available tutorials,
 				documentation, easy access to people who might help with Git-related questions.

 		
 	Version control:

 			
 	History of changes made to a project.

 			
 	Ability to revert to previous changes and to see who made certain
 				changes.

 		

 		
 	Collaborate on the same project with support to:

 			
 	Check out.

 			
 	Update.

 			
 	Commit/Revert changes.

 			
 	Resolve conflicts.

 		

 		
 	Support for branching (branches used for versioning the documentation or for working
 on
 			larger features) and for merging between branches.

 		
 	Support for working on your own repository even without online access and then to
 merge
 				changes in the remote repository when the online connection is available.

 		
 	Collaborate with other teams in the same company on projects, either by having
 			the documentation as part of the larger Git repository of the product, or by
 			allowing developers who know Git to contribute reviews.

 		
 	Support for creating pull requests for people who might not have write access or want
 to
 				have their work reviewed.

 	

 	

 	

 Related information

 	https://www.atlassian.com/git/tutorials/why-git

 Disadvantages of Using Git

 	

 	

 		
 	No built-in support for a ticketing system.
 Tip: This
 					support is added on the side either by using a commercial ticketing system (such
 					as JIRA) or by using Git-based servers (such as GitHub or GitLab), which have
 					their own basic ways of adding and closing issues.

 		
 	No built-in support for publishing.
 Tip: Publishing
 					pipelines need to be built separately.

 		
 	No way to lock resources when editing to avoid conflicts.
 Tip: However, there are ways to easily resolve most conflicts.

 		
 	Mistakes can be made when using Git.
 Tip: Usually
 					mistakes made that break the Git history or project structure can be reverted,
 					or you can check out the entire project again.

 		
 	Some training is required to use and understand the branching and history models in
 Git.
 				Ideally, you should have a Git person who understands how to resolve
 				conflicts, revert and cherry-pick commits, and in general, recover from any Git
 				issues or at least who is willing to invest some time in understanding the Git
 					model.
 Tip: Such training tutorials and courses
 					are readily available.

 			
 	Native Git is inefficient when asked to store large binary files (videos) or large
 				numbers of binary files (images, PDFs) because every revision of every file is
 				stored locally.

 		
 	No granular support for user roles. Users usually either have full read-write access
 to a
 				repository or read-only access.
 Tip: When using
 					GitHub or GitLab, users with read-only access to a repository can still create
 					pull requests with the changes they want to incorporate into the main
 					repository.

 	

 	

 	

 Related information

 	https://www.atlassian.com/git/tutorials/why-git

 Useful Resources

 	

 		

 Learning Git

 			
 			

 				

 					
 	Git Basics tutorial by Atlassian.

 					
 	The Pro Git Book.

 					
 	Learn Git Braching Interactive Tutorial.

 					
 	Blog post: Collaborating on Docs: Best Practices and
 							Strategies From JetBrains Writers.

 					
 	Lots of courses about learning Git on Udemy.

 					
 	Book written by a technical documentation writer: Learning Git: A Hands-On and Visual Guide
 							to the Basics of Git - Anna Skoulikari on Amazon.

 				

 			

 		

 		

 Workflows and Collaboration

 			
 			

 				
 	DITA For Small Technical Documentation Teams

 				
 	Docs as Code:

 						
 	GitLab Docs As Code blog
 							post

 						
 	Docs as Code blog post

 						
 	Write the Docs - Docs as code blog
 								post

 					

 				
 	Git Workflows

 				
 	Tactical Git - Micro Commits

 			

 		

 	

 Applications for Working with Git

 	

 		

 Server-side solutions

 			
 			

 				

 					
 	GitHub (either online or on-premise).

 					
 	GitLab (either online or on-premise).

 				

 			

 			
 Both of these solutions come with:

 					
 	Support for creating and managing private/public repositories.

 					
 	Basic support for creating and handling tickets/issues.

 					
 	Support for creating pull/merge requests.

 				

 		

 		

 Client-side applications

 			
 			
 There are lots of free client-side applications that can be used to work with Git
 				repositories:

 			

 				
 	Git Fork

 				
 	Git Tower

 				
 	SourceTree

 				
 	GitHub Desktop

 				
 	Git console

 				
 	Git Client add-on in Oxygen XML Editor

 				
 	Web-based clients like Oxygen Web Author
 				

 			

 		

 	

 Typical Editing Session

 	

 		
 Usually, an editing session has the following stages that are repeated throughout
 the day:

 		

 			
[image: ../images/editing-session-stages.png]

 			
 			

 				
 	Clone/Checkout Branch From Remote Repository - Checkout a branch from the remote
 					repository on which you want to work. Usually done only once.
 [image: ../images/clone.png]

 				
 	Edit Content - The project is edited and modified in the current working
 					copy.

 				
 	Commit Content - Commit the changes to the local working copy.

 				
 	Pull Content From Remote Repository - Obtain the latest content for the
 					edited project branch.

 				
 	Push Content To Remote Repository - From time to time, push the commits to the remote
 					repository so that others can use them as well. You must always pull content
 					from the repository before pushing to it, otherwise the pull will fail.

 				
 	[image: ../images/pullBeforePush.png]

 			

 		

 		

 Commit Message

 			
 			
 Each commit has a commit message. The commit message is in general a brief
 				description of the changes. When using a ticketing system, as a best practice
 the
 				commit message contains the ID of the ticket.

 			
[image: ../images/commit-message.png]

 		

 		

 Micro Commits

 			
 			
 Commit often, whenever a small change in the documentation is beneficial and makes
 				sense by itself. Useful links: https://stackoverflow.blog/2022/12/19/use-git-tactically/
[image: ../images/micro-commits.png]

 		

 		

 Handling Simple Conflicts

 			
 			
 Conflicts are usually caused by trying to push changes made to resources that, in
 the
 				meantime, have been modified by others on the remote repository. Conflicts normally
 				occur when working with Git, they can be resolved and they are not a sign that
 				anyone did anything wrong.

 					
 	If changes are made to text files on different lines, the conflicts are
 						automatically merged.

 					
 	
 						
 If the conflicting changes are on the same lines, you can resolve the
 							conflict.

 						
 [image: ../images/simpleConflict.png]

 						
 The conflict can be resolved by keeping your version, or the version of
 							the remote collaborator, or by manual merging:

 						
 [image: ../images/resolveConflict.png]

 					

 				

 		

 Validation

 	

 DITA XML content needs to be validated against the DITA schemas and possibly with
 			additional business rules (usually implemented using Schematron checks). There
 are
 			various ways to ensure the proposed content changes are valid:

 				
 	Validate the entire DITA project on the server side. Examples:

 						
 	Run validation on an integration server like Jenkins.

 						
 	Run validation as a GitHub action.

 					

 				
 	Validate on the client side before committing or pushing changes. For example,
 					the Oxygen Git Client add-on allows two types of
 					client side validation:

 						
 	Validate modified resources before committing.

 						
 	Validate the entire DITA project before pushing.

 					

 			

 	
 Common Workflows

 	
 	

 		
 Workflows are recipes for working and collaborating
 			successfully on a Git project.

 		
 Common workflows for working with Git:

 				
 	Centralized Workflow

 				
 	Feature Branches

 				
 	Release Branches

 				
 	GitFlow

 			

 	

 	Centralized Workflow

 	Feature Branches

 	Branches For All Changes

 	Release Branches

 	GitFlow

 Centralized Workflow

 	
 	

 		
 We all work with the same project(s) on the main repository branch. We have separate
 branches
 			which mark past releases. Both for small bug fixes and for features which may take
 a
 			longer time to implement, we work on the main branch. https://www.atlassian.com/git/tutorials/comparing-workflows

 		
[image: ../images/centralized-wf.png]

 		
 		
 Common workflow:

 			
 	Check in the project (one time operation).

 			
 	Pull to get changes from the main repository.

 			
 	Commit and push changes.

 			
 	Deal with possible conflicts which may appear.

 			
 	Request review either before commit or after the change was incorporated in
 				the main branch.

 		

 		
 Workflow for updating documentation for a past release:

 			
 	Switch to branch specific for that release.

 			
 	Pull to get changes from the main repository.

 			
 	Commit and push changes.

 			
 	Deal with possible conflicts which may appear.

 		

 		

 Cherry Pick

 			
 			
 Pick a commit from another branch and incorporate it. Useful to take small fixes for
 				a version branch and add them to the main branch.

 			
 https://www.atlassian.com/git/tutorials/cherry-pick
[image: ../images/cherry-pick.png]

 			
 		

 	

 	
 Feature Branches

 	
 	

 		
 We work on the smaller fixes on the main branch, we create separate branches for larger
 			features/fixes. We also create separate branches for past released versions of
 the
 			documentation in order to add small fixes and be able to re-publish documentation
 for
 			them.

 		
[image: ../images/feature-branches.png]

 		
 		

 			
 	Create a branch on which you work on a larger feature either by yourself or with
 				some other colleagues.

 			
 	You can also request review on the branch.

 			
 	When finished, merge the branch in the main repository branch or create a pull
 				request to merge the branch.

 		

 	

 	

 Related information

 	https://www.atlassian.com/git/tutorials/comparing-workflows/feature-branch-workflow

 	https://betterprogramming.pub/solution-architecture-docs-as-code-366a7b40f9e5

 	
 Branches For All Changes

 	
 	

 		
 We create branches for any change, either for large features or small fixes. We also
 create
 			branches for past released versions of the documentation in order to be able to
 add
 			small fixes and re-publish documentation for a specific past version.

 		
[image: ../images/any-change-branches.png]

 		
 		

 			
 	Create a branch on which you work to fix small problems or to work on a larger feature
 either
 				by yourself or with some other colleagues.

 			
 	You can also request review on the branch.

 			
 	When finished, merge the branch in the main repository branch or create a pull
 				request to merge the branch.

 		

 	

 Release Branches

 My name is Chris Papademetrious and I work for Synopsys Inc., a semicoductor design
 automation software company. I am an occasional guest contributor to the Oxygen XML
 blog, and I wanted to share how we use Git.

 Our team writes documentation for many different products. And for the most part,
 all
 products follow a common software and documentation release schedule (every three
 months). Our technical writers are knowledgeable on the products they write for, but
 they tend to be novices with Git.

 Our Attempt at the Centralized Workflow

 When we first adopted DITA and Git, we used the centralized workflow. However, we
 ran
 into issues when a particular product group needed to delay their release schedule.
 When the rest of the group began working on the next release in the main branch, the
 delayed group could not stay in the main branch because then "last-release" and
 "next-release" content would get mixed and there was no single point where the main
 branch represented the final release state. And so in these cases, we had to fork
 a
 release branch off the main branch and move the delayed product writers there. (And
 sometimes writers would keep working in the main branch out of inertia, and so the
 main branch content would get mixed up anyway...)

[image: ../images/snps_centralized_workflow.png]

 We considered using the feature branch workflow. However, this would require writers
 to be responsible for branch actions (forking feature branches and submitting pull
 requests), which they had never done before. Many products have multiple writers,
 which would require those feature branches to be synchronized on the server for
 collaboration. Some products have 40+ features in a release cycle, and our past
 experiences told us that writers could sometimes forget to switch branches. And so
 we decided not to use this workflow.

 We needed a workflow in which a writer could simply continue to write for a release
 and not worry about switching branches until the release was done—regardless of
 whether their product finished its release early or late. So, we moved to a
 release branch workflow.

 The Release Branch Workflow

 In our release branch workflow, we create a branch for each release, named by the
 scheduled release date. A writer can work in a release branch as long as they like,
 and they can move to the next release branch whenever they are ready. If a feature
 requires collaboration by multiple writers, they can collaborate in that release
 branch.

 The key feature of our release branch workflow is the cascaded release
 merge. Each week, we merge new commit activity forward from earlier
 release branches to later release branches. If a branch has no new commit activity
 since the last merge, no merge is performed from it.

[image: ../images/snps_release_branch_workflow.png]

 In the preceding diagram, the release1 branch is completed and quiet. Product writers
 are finishing work in the release2 branch and moving to the release3 branch. Their
 work in the release2 branch is automatically propagated to release3. At some point,
 a product team finds that a retroactive documentation fix is needed for a feature
 in
 the release1 branch. This fix is automatically propagated forward into the release2
 and release3 branches.

 In this workflow, the writer must remember only to check out the next release branch
 after they complete their current release. And this is a notable enough
 accomplishment that they tend to remember to do this.

 However, writers can work in multiple release branches if they want to. Most products
 have major releases on every third release interval. In this case, writers can make
 minor typo fixes and rewordings in the next minor release branch, but get an early
 start on feature documentation in the next major release branch. (Although in this
 case, the writers must be diligent again about remembering to switch branches!)

 For the most part, writers don't need to worry about the logistics of the release
 merges. However, there are some cases in which they do need to be aware of them. For
 example,

 	If a writer writes content for one release and wants to incrementally modify
 that content for the next release, they must wait for the merge to propagate the
 work forward to the next branch to be able to continue work on it.

 	If a writer wants to add content that should not propagate forward to subsequent
 releases (such as a temporary bug or limitation that is fixed in the next
 release), then they add content to the earlier release, wait for a merge, then
 remove it in the next release.

 In these cases, the writers can ask me to run a merge manually so they do not have
 to wait.

 The Branch-Merging Perl Script

 The release branch merge is performed by a perl script called
 merge_repo.pl. The usage is as follows:

 $ merge_repo.pl --help
Usage:
 --dry-run
 Do not actually commit any changes
 --starting-at branch_name
 Start merging at this branching (merging from previous branch)

 The script uses the command-line git client to perform its work. One
 notable requirement is that the script needs a local repository to perform its
 merging work in. The script automatically fetches and pulls all remote updates,
 creating new local branches and deleting local branches that no longer have matching
 remote branches as needed.

 The script obtains the chronological list of release branches by querying and sorting
 all branches that match release/* - there is no need to update any
 branch list text files or databases as new release branches are created.

 Here is an example of its output:

 $ merge_repo.pl
Checking for commits to merge from 'release/2022.09' to 'release/2022.12'...
Merging 1 commits from 'release/2022.09' to 'release/2022.12'...
Pushing merge to 'release/2022.12' upstream...
Merge from 'release/2022.09' to 'release/2022.12' succeeded.

Checking for commits to merge from 'release/2022.12' to 'release/2023.03'...
Merging 4 commits from 'release/2022.12' to 'release/2023.03'...
Pushing merge to 'release/2023.03' upstream...
Merge from 'release/2022.12' to 'release/2023.03' succeeded.

Checking for commits to merge from 'release/2023.03' to 'release/2023.06'...
Merging 8 commits from 'release/2023.03' to 'release/2023.06'...
Pushing merge to 'release/2023.06' upstream...
Merge from 'release/2023.03' to 'release/2023.06' succeeded.

 Here is the resulting commit graph as shown on the Gitlab server web page, from the
 previous merge to the just-completed merge:

[image: ../images/gitlab_merge_graph.png]

 As mentioned earlier, no matter how many "earlier" branches exist, no forward merge
 is performed from a branch unless it contains new activity since the last merge.

 If a release merge result cannot be pushed (perhaps because a writer just pushed
 something new to the server), the script abort its current merge, updates its local
 repository, and retries the merge.

 If the script encounters a merge conflict, it prints information to STDERR about how
 to manually reproduce and resolve the conflict, then continue the merge:

 $ merge_repo.pl
Checking for commits to merge from 'release/2022.09' to 'release/2022.12'...
Merging 1 commits from 'release/2022.09' to 'release/2022.12'...
Pushing merge to 'release/2022.12' upstream...
Merge from 'release/2022.09' to 'release/2022.12' succeeded.

Checking for commits to merge from 'release/2022.12' to 'release/2023.03'...
Merging 4 commits from 'release/2022.12' to 'release/2023.03'...
Merge from 'release/2022.12' to 'release/2023.03' failed:
Auto-merging some_topic.dita
CONFLICT (content): Merge conflict in some_topic.dita
Automatic merge failed; fix conflicts and then commit the result.
some_topic.dita:21: leftover conflict marker
some_topic.dita:24: leftover conflict marker
some_topic.dita:25: leftover conflict marker
some_topic.dita:27: leftover conflict marker

Perform the following commands manually:

git checkout release/2023.03
git merge release/2022.12
...resolve conflict...
git push
merge_repo.pl --starting-at release/2023.06

 The script runs every Wednesday as a cron job. For conflicts or
 other errors (like server downtime), the resulting output to STDERR causes
 cron to email the command output to the script owner (in
 this case, me). Thanks to this behavior of cron, the script
 operates quietly unless attention is needed.

 	
 GitFlow

 	
 	

 		
 Gitflow is a legacy Git workflow that was originally a disruptive and novel strategy
 for
 			managing Git branches.

 		
 The main branch holds the official content which will be released, we mostly commit
 small
 			fixes on a development branch and use feature branches based on it.

 		
[image: ../images/git-flow.png]

 		

 	

 	

 Related information

 	https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

 	
 Propose Changes

 	
 	

 		
 Besides the team of technical writers who have full write access to the documentation
 			repositories, there may be other collaborators (e.g. subject matter experts) who
 have
 			read access to the repository and sometimes want to propose changes.

 		
 The workflow for proposing changes to a repository usually works like this:

 				
 	The collaborator creates a branch of the project on which they make changes and
 					add comments.

 				
 	The branch is integrated back into the main project branch by the technical writer.

 			

 		
 [image: ../images/pull-request.png]

 		
 		
 Git Servers like GitHub or GitLab may add some extra functionality to help
 			technical writers review and accept changes.

 	

 	

 Related information

 	Pull Requests

 Handling Translations

 Some useful advice for translating a DITA XML-based project can be found here: Translating your DITA Project.

 The translated DITA content can also be stored on Git:

 	Keep the translation for each language in a separate folder in the same Git
 project. As a benefit, binary resources can be shared between projects.
 [image: ../images/translate-one-project.png]

 	

 Keep a separate parallel project with all the translations.

 [image: ../images/translate-separate-projects.png]

 	
 Sharing Common Settings

 	
 	

 		
 It makes sense to share various common editing settings when working on a common Git
 				project:

 				
 	Spell check dictionaries and learned words.

 				
 	Checking
 						Terminology.

 				
 	Actions and behaviors
 						for editing content.

 				
 	Custom validation and quick fixes.

 				
 	Publishing templates.

 			

 		
 There are various ways to share these custom editing settings between the people who
 			collaborate on the same Git projects:

 				
 	Use a web editing tool to edit the Git content directly in a web browser with all
 settings
 					being common in the tool. Example: Oxygen XML Web Author Git
 					connector.

 				
 	Manually share a common set of settings.

 				
 	Share the common settings directly in the Git project. Example: DITA Startup Project. When an Oxygen project that
 					contains settings is distributed in a Git project, writers automatically get
 the
 					latest updates to the Oxygen environment without any work on their part.

 			

 	

 	
 Publishing Content From Git

 	
 	

 		
 There are two main ways to publish:

 				
 	Publish on the client side using the local Git repository and then manually
 					upload the published content to a web server.

 				
 	Server Side Building and Publishing by connecting for example
 					integration server to the Git project. For each version branch, a separate
 					server-side job could be created to run when the content is modified on that
 					branch.

 			

 	

 Types Of Companies Who Would Benefit From Using the DITA XML Standard

 In general, I would divide the companies that benefit from using DITA XML for their
 technical documentation needs in three large sections:

 	Companies Creating Physical Products

 	

 These companies create real-world objects, such as cars, refrigerators, or
 computer chips. Each version of each product has an unique product ID and
 needs to be documented. Different products are sometimes similar in
 functionality but they also have some differences.

 	Companies Creating Version-ed Software Products

 	

 These companies provide software components that are version-ed and usually
 get installed on the client's side. As each client may have an older version
 of the product, user manuals for older versions need to be made
 available.

 	Companies Creating Version-less Software Products

 	

 These companies usually provide cloud-based services, the end-user always
 receives access to the latest stable release, and there is no user manual
 made available for past releases.

 The benefits for companies would be as follows:

 Benefits

 	Benefits

 	Company Types

 	Physical Products

 	Version-ed Software Products

 	Version-less Software Products

 	Take advantage of DITA XML high reuse capabilities and
 condition profiling/filters to produce multiple similar, but not
 identical, manuals from the same project.

 	Produce manuals for similar components.

 	Produce user manuals for similar types of software
 products.

 	Produce user manuals for similar types of software
 products.

 	Add structure-based validation rules that must be followed by all
 members of a team.

 	Use common validation and terminology rules for the entire
 team.

 	Use common validation and terminology rules for the entire
 team.

 	Use common validation and terminology rules for the entire
 team.

 	Create custom vocabulary of semantic elements.

 	Useful to add specific semantic meaning to content specific for
 the company.

 	Useful to add specific semantic meaning to content specific for
 the company.

 	Useful to add specific semantic meaning to content specific for
 the company.

 	Besides web-based outputs, produce PDFs with a relatively high
 degree of control over the PDF customization.

 	Useful to produce PDFs for print or online delivery.

 	Useful to produce PDFs for print or online delivery.

 	Useful to produce PDFs for print or online delivery.

 Supporting the DITA OT Project as a Commercial Company

 Overview

 This small article is about the relationship between our company, Syncro Soft (which
 produces the Oxygen XML tools), and the open source DITA Open Toolkit project.

 As a commercial company using the DITA Open Toolkit in multiple projects, we try to
 base this relationship on:

 	Give and take

 	Respect

 	Growth

 but as in any relationship, there is probably always room for improvement.

 History and Context

 We started integrating
 the DITA Open Toolkit into Oxygen about 14 years ago, some time around
 2008 in Oxygen XML Editor version 10. The DITA Open Toolkit remains a very
 important part of the DITA XML editing and publishing solution provided by
 us.

 Currently, we are using the DITA Open Toolkit as a publishing component in
 our Oxygen Publishing Engine in multiple projects:

 	Oxygen Publishing Engine (based on the DITA OT)

 	Oxygen XML Editor

 	Oxygen XML Author

 	Oxygen XML Developer

 and there will probably be more to come in the future.

 Implementing Plugins for the DITA Open Toolkit

 During these years, we've implemented a number of commercial plugins for the DITA
 Open Toolkit, plugins bundled in the Oxygen Publishing Engine:

 	DITA to WebHelp Responsive

 	DITA to PDF (using CSS for styling)

 	DITA to Zendesk

 	CodeBlock Syntax Highlight

 We also created a considerable number of open-source DITA Open Toolkit plugins (about
 23) available on the Oxygen GitHub organization, with some of the most
 popular ones being:

 	DITA Metrics Report

 	Export DITA Map

 	DITA Media Support

 	DITA PDF Track Changes

 	Embed PlantUML and Mermaid diagrams

 	Embed Latex Equations

 These open-source plugins are useful both for their original purpose but also as sample
 plugins for people wanting to implement something similar. We try to maintain the
 open-source plugins (as time allows) and answer any questions related to them.

 Helping with Publishing-related Questions

 There are various channels where people ask questions about DITA OT publishing:

 	DITA
 Users List (about 1000 answers and replies so far)

 	DITA OT Users Google Group

 	DITA OT Discussions List

 	DITA OT Slack
 Channel

 	Stack Overflow (about 80 answers so far)

 There are also Oxygen-specific channels:

 	Oxygen XML Forum (2328 DITA
 editing/publishing related topics so far)

 	Oxygen Users List

 As time allows, we try to help people with DITA Open Toolkit-related questions on
 these channels.

 DITA Open Toolkit Publishing-related Articles

 The Oxygen XML
 Blog has more than 20 DITA Open Toolkit publishing related
 articles.

 Registering and Analyzing Issues, Opening Pull Requests

 Our general procedure when encountering DITA Open Toolkit bugs is to:

 	Open issues for them on the DITA Open Toolkit list.

 	If possible find time to analyse the issues.

 	Propose workarounds or fixes.

 We are possibly the biggest contributor of bug and improvement requests to the DITA Open
 Toolkit. Most of these bugs and improvements are discovered by our end users and added
 by us on the DITA OT issues list. During these years we've opened more than 400 issues on the DITA Open Toolkit project.

 In the last few years, we became a major contributor of pull requests that contain
 bug
 fixes (more than 70 contributed pull requests so far).

 Contributing with Improvement Ideas to the DITA Open Toolkit Project

 During these years, we contributed improvement ideas to the DITA Open Toolkit and
 were involved in the process where they were implemented. Here are some improvement
 ideas in
 which we were involved:

 	The DITA Open Toolkit Project file.

 	Metadata to specify parameter names, descriptions, and default values in the
 plugin descriptor files.

 	Processing RelaxNG-based DITA Maps and topics.

 Contributions to the DITA Open Toolkit Documentation

 The DITA Open
 Toolkit documentation has relevant content for people who want to get started using
 and customizing the DITA Open Toolkit. We frequently help our users by giving them
 links to
 the DITA OT documentation.

 When necessary, we contribute issues on the DITA Open Toolkit documentation issues
 list:
 https://github.com/dita-ot/docs. I contributed
 to the DITA OT Docs project about 20 issues so far.

 The DITA Open Toolkit Day

 We started hosting and sponsoring the DITA Open Toolkit Day about 8 years ago, back
 in 2014, as a way to bring the community of plugin/customization developers together
 with the main contributors to the DITA OT project. The DITA OT Day is also a
 means to celebrate the work of the main DITA OT contributors. Recordings for all
 videos from past DITA OT Day events can be found here: https://www.dita-ot.org/dev/topics/dita-ot-day-videos.html.

 DITA Map Metrics Evolution

 The DITA Map Metrics Report transformation scenario
 available in Oxygen can be applied on a DITA Map and produce all kinds of interesting
 metrics
 for your DITA project:

 	The number of processed maps and topics.

 	Content reuse percentage.

 	Number of elements, attributes, words, and characters used in the entire DITAmap
 structure.

 	DITA conditional processing attributes used in the DITA maps.

 	Processing instructions.

 	External links.

 	All @outputclass attribute values gathered from the DITA project.

 There is also an open source DITA Open Toolkit plugin on the Oxygen XML GitHub
 organization which can be used to generate a metrics report either in HTML or XML
 format.

 If you generate metrics for various stages in the history of your DITA project (for
 example
 for various releases) you can combine those metrics and generate graphs which can
 show various
 indicators like:

 	Fluctuations in number of topics and maps.

 	Fluctuations in content reuse.

 Metrics reports and metrics evolution reports are useful to get an overview of a DITA-based
 documentation project and to discuss its future directions. They are also useful indicators
 to
 discuss with management.

 Here are some steps to generate a metrics evolution report for a DITA project hosted
 on a Git
 server:

 	Install this DITA Open Toolkit plugin which can publish DITA tables as SVG graphs:
 https://github.com/oxygenxml/dita-table-svg.

 	Install the DITA Metrics report plugin in your DITA Open Toolkit installation (if
 not
 yet installed): https://github.com/oxygenxml/dita-ot-metrics.

 	Switch your Git project to various tagged versions, after each switch apply the
 metrics-report-xml transformation type on the DITA Map and
 generate an XML file representing the metrics for that particular version. As an example
 I
 created 4 metrics reports for 4 previous Oxygen XML User's Guide versions: https://github.com/oxygenxml/dita-ot-metrics/tree/master/evolution/samples.

 	Apply the provided XSLT stylesheet to generate a DITA topic
 containing tables which show how various indicators change between versions.

 	Apply the DITA to HTML5 transformation on the topic to create an
 HTML document showing the evolution of different indicators as a graph.

 Oxygen XML Editor DITA Editing solution strong points.

 We are sometimes asked which are the differentiating features between Oxygen XML Editor
 and its competitors when it comes to DITA Editing. So below I tried to list some
 differentiating features (strong points) that Oxygen has:

 	User based license which allows somebody to install Oxygen on multiple computers
 (work computer, home computer) as long as they are the only ones using it: https://www.oxygenxml.com/eula.html.

 	Transparent pricing, prices are available on the web site: https://www.oxygenxml.com/buy.html.

 	 Great technical support. You can ask us questions via email or via the forum.

 	 Cross platform availability. Being able to run Oxygen on Windows, Mac or
 Linux.

 	 Complete DITA Editing support:

 	Lots of pre-defined actions to insert reusable content, images, links,
 videos.

 	DITA-specific helper views (DITA Maps Manager, DITA Reusable Components)

 	Support to customize the editing environment: add custom actions, remove
 current actions, customize content completion items, create custom
 validation or transformation scenarios.

 	Powerful publishing solution for producing responsive WebHelp and PDF using CSS to style the
 output.

 	Publishing to output formats like Windows Help (CHM), Ms Word, EPUB, Eclipse
 Help included.

 	Lots of commercial DITA CMSs have
 integrations with Oxygen.

 	Support for change tracking and for adding comments in the editor along with a
 special Review view to review changes: https://www.oxygenxml.com/doc/ug-editor/topics/author-managing-changes.html

 	Support to add third party plugins and enhance Oxygen's functionality. And lots of free add-ons already available to
 add support for Git integration, DITA translations and Batch conversions from
 various formats to DITA.

 	Support to add custom validation rules based on your internal style guide. The rules
 can be implemented using the Schematron standard and you can also add quick fixes
 for them: Schematron Checks to help Technical Writing.

 	Support to send DITA content to reviewers using the Content Fusion add-on.

 DITA Oriented Tips And Tricks

 Oxygen XML Editor has about 18 years of development under its wings. During these
 years, we added lots of functionality and many of our users usually do not know more
 than 20-30%
 of Oxygen's features. So this presentation is intended for technical writers using
 Oxygen to
 write DITA content and who may want to find out more about their tool.

 Add-ons

 There are lots of free add-ons provided by the Oxygen team that can be installed in
 an
 Oxygen standalone version. I will enumerate some of
 the most interesting one:

 	Git add-on. This plugin adds a side view allowing you to do some
 common Git operations like pull, commit, push (mostly 90% of what a regular Git user
 would
 do).

 	Content Fusion Connector add-on. Collaborate with
 your peers by sending them links that allow them to give you feedback on your work
 using a
 web browser without the need to pre-install anything on their side.

 	Translation package builder. Small plugin that can
 be used to prepare a zip file containing only the topics that have changed from one
 version to another.

 	Batch convertor add-on. Converts multiple HTML,
 Markdown, Excel files to DITA.

 Project-related Functionality:

 The Oxygen Project view is the place where you can organize and apply batch changes
 to all
 your DITA resources:

 	Main files support. Enable main files support
 in the DITA project, add your top level DITA Maps as main files and any structure
 changes, renaming or moving files will automatically update all links in the DITA
 Project.
 Also works for renaming/moving image resources.

 	Store options at project level. Almost all of
 Oxygen's preferences pages can be saved at project level. Once you do that, you can
 share
 the project.xpr file with somebody else and when they open it, they will also get
 the settings set inside the project.

 	Compare files/folders.

 	Refer to multiple folders.

 	Batch operations: Select a folder in the project
 and use the "Transform", "Validate", "Format and Indent", "Find/Replace in Files",
 or
 "Spell Check in Files". Or use the "XML Refactoring" action to apply a refactoring
 stylesheet over all the selected files.

 	Filter files. You can instruct the Project view to
 hide various file types.

 Navigation:

 Actions to find opened files, find files containing a certain content or navigate
 between
 files.

 	In the main Window menu, you can find the Next/Previous
 Editor actions and their shortcuts. Together with the Switch editor tab
 action, these help you navigate between opened XML documents.

 	The Open/Find Resource view (main menu
 Window->Show View) allows you to search for file names, search in file contents,
 or search for files containing comments or change tracking.

 	Right-click the tab of an opened DITA document and use the Copy location action.
 Or use the Show in Explorer/Finder action to locate the file.

 	Use the main menu File->Reopen last closed editor action to re-open the last
 closed file.

 	Open a DITA topic in the Text editing mode, right click, choose Go to
 definition to open the DTD, XML Schema or RelaxNG Schema at the precise location
 where that DITA element is defined, something useful for debugging DITA
 specializations.

 	Use the Navigation toolbar to Go back/forward/last modification.

 Find/Replace Functionality

 The Find/Replace functionality is the bread and butter of any editing application
 and
 Oxygen has lots of functionality in this regard:

 	Find/Replace in Files.

 	Restrict to XPath - If you want to make replacements only in certain parts of the
 XML document, the XPath restriction can be used to focus only on certain attributes
 or
 element content.

 	Ignore Whitespaces - You should usually check this checkbox as there is always there
 is a possibility what the words you are searching for may be split on multiple lines
 in the XML content.

 	The Find menu → Find Next/Previous actions allow you to find the
 next/previous occurrence of the current selected word(s). Or you can use the Find
 All action to find and highlight all occurrences of a word or a sequence of
 words.

 	The Find menu → Find all Elements action shows a dialog box allowing you
 to find elements or attributes containing a sequence of words.

 	The Find menu → Quick find toolbar is a compact toolbar giving you access
 to search functionality.

 	The XPath allows you to use XPath expressions (i.e.
 //comment()[contains(., 'TODO')]) to search the current topic or a set
 of topics for elements, attributes, or comments matching a set of conditions.

 DITA Maps Manager

 The DITA Maps Manager view's contextual menu gives you quite an impressive array of
 useful
 actions:

 	Fast create new topics. Create a set of DITA
 topics by specifying only their titles.

 	Add references to multiple topics.

 	Create key definition with keyword.

 	Edit Properties - You can even set profiling attributes on multiple selected topic
 references.

 	Export DITA Map - Export your DITA Map to a zip archive ready for translation.

 	Find Unreferenced Resources - Find all resources
 which are no longer used in a DITA project.

 	Refactoring menu

 	Rename/Move topic - Renames a topic and all references to it.

 	Rename key - Rename a DITA key and all its references in the entire project.

 	Conversions between topics - Convert between
 topics, tasks, concepts, and references for multiple selected DITA files.

 	Convert nested sections to new topics - Convert all sections located inside a topic
 to new topics.

 	Convert nested topics to new topic - Convert all nested topics to new topic
 files.

 	Apply custom refactoring scripts - Create and
 apply your own XSLT or XQuery refactoring scripts.

 	Find/Replace in Files.

 	Spell Check in Files.

 	Search References - Search all references to a particular referenced topic.

 	Remove from Disk - Check in how many places a
 topic is referenced and then remove it from disk.

 	Open with resolved topics - Open the DITA Map with
 all topic references expanded, useful if you want to have an overview of the entire
 publication.

 	Synchronized selection between DITA Maps manager and main editor area - Anytime a
 DITA
 topic is opened both in the DITA Maps Manager and the main editing area, moving the
 selection in one instance will also move the selection to the corresponding place
 in the
 other.

 Editing in the Author Visual Editing Mode

 	Maximize editor area - Double-click the opened editor's tab to hide all side views
 and
 maximize editing space, double click again to show the side views.

 	Increase/decrease editor font - Use Ctrl/CMD +/- to increase or decrease the
 font in the current edited document.

 	Inserting elements - Pressing ENTER in the Author visual editing mode will show you
 a
 list with all possible elements that can be inserted. If you choose an invalid element,
 Oxygen will find a place for it. You can also add custom actions or code templates to the content
 completion list.

 	Select content then press ENTER to surround the content in a new element.

 	Select multiple intervals - Press the Ctrl/CMD button when selecting text to
 select multiple text intervals. Once you do that, you can use toolbar actions like
 Bold, Italic, or Underline or you can use the Edit Profiling
 Attributes action to set profiling attributes on all the selected items.

 	In-place attributes editor - Instead of using the Attributes view, you can
 press Alt-Enter to edit attributes for the current element in a small pop-up
 dialog box.

 	Select an entire element - Triple-click inside an element's contents to select the
 entire element. After this, you can move the element to a new place.

 	Double-click to select by word, then drag the mouse to select the content word by
 word.

 	Move elements (especially paragraphs, list items) up or down (ALT-UP/DOWN),
 indent or unindent list items (Tab, Shift-Tab).

 	Select content and then use the Toggle comment action (contextual menu
 Refactoring submenu) to quickly add an XML comment around it.

 	In the contextual menu the Text submenu contains
 useful actions to count the number of words in the entire document (or in the selected
 text), convert the selection to upper, lowercase, or sentence case

 	Bookmarks - Click the vertical left side bar in
 the editing area to add a bookmark. Navigate to that bookmark even after the file
 has
 been closed using the Ctrl/CMD + number shortcut.

 	Collapse other folds - Click a fold triangle in
 the Author visual editing mode and you can choose to close all other folds, useful
 when
 working with multiple sections in the same file.

 	

 Code templates - Define small fragments of XML
 content that can be inserted either by defining a shortcut key or by pressing
 ENTER in the editing area.

 	

 Editor variables - Certain Oxygen-specific
 macros can be automatically expanded. For example, a code template that inserts the
 current author name can use this editor
 variable:
 <author>${author.name}</author>
or a code
 template that surrounds the selection inside a <keyword>
 element:
 <keyword>${selection}</keyword>
or a code template
 that first asks the end user for their name and then inserts it in the
 document:
 <author>${ask('Author Name', generic, 'John Doe')}</author>
Code
 templates can also be used when creating new file templates.

 	Outline Quick find filter - The Outline view contains a filter that can be used to
 reduce the number of elements displayed in it (for example, display only the contained
 topics).

 DITA-specific Editing in the Author Visual Editing Mode

 	DITA Reusable Components view. You can use this
 side view to quickly search for and insert references to keys or to reusable
 components.

 	Inserting links to resources. Besides using the toolbar actions you can also:

 	Drop a file from an outside location. Drag a DITA topic or other resource from the
 Explorer/Finder or from the Oxygen Project and drop it inside an opened DITA topic
 to insert a reference to it.

 	Paste a URL in the editing area to insert a reference to it.

 	Links to images:

 	Drop images from the Project view in the main editing area to insert references to
 them.

 	Copy an image and then paste it in the editing area to insert a reference to
 it.

 	Double-click broken image reference to modify attributes.

 	Reuse content:

 	Copy an element that has an ID set on it and then right-click elsewhere and use
 the "Paste Special → Paste as content reference" to insert a content
 reference to the element.

 	Select multiple sibling paragraphs and use the Insert list item toolbar item to
 convert them all to list items. Select multiple list items and use the Insert
 table toolbar action to convert them to a table.

 	Working with tables:

 	You can right-click inside a table and use the Table Properties action to
 change lots of table-related settings.

 	You can sort tables based on certain criteria.

 	In the contextual menu Refactoring submenu you can find actions to convert
 between CALS and simple tables.

 	You can select an entire table by clicking its left corner and select an entire
 row by clicking to the left of it.

 	Add hotspots to images - You can right-click any
 image reference and use the Image Map Editor to configure target links for
 various parts of the image.

 	You can right-click inside an element and use the About Element contextual menu
 item to find out more about it.

 	Pasting content from web browsers, Excel spreadsheets, or Word documents inside a
 DITA
 topic produces the equivalent DITA content.

 	The Styles drop-down toolbar menu allows you to choose between various CSS
 styles to apply while editing. The Hints and Inline actions layers should
 be interesting for you to experiment with. Or you can add your own.

 Preferences:

 Oxygen has a lot of global settings that can be configured, I will just list what
 I
 consider to be the most important ones:

 Menu shortcut keys - You can use this preferences
 page to assign or to see the shortcut for any action available in Oxygen.

 Fonts - This page allows you to change the default
 fonts used in the application.

 Appearance - Change the default color theme in
 Oxygen (the Graphyte theme is quite popular).

 Spell check - Customize the spell checker settings,
 use custom spell check dictionaries.

 Save - Settings to automatically save or to check
 for errors before saving the file.

 External tools - Define various command line tools
 that you can launch from Oxygen.

 Annotations - Disable the tooltips which appear when
 hovering over various elements (useful if you have a small screen).

 Tools

 The Tools main menu is worth exploring sometimes. You can invoke XML refactoring
 actions from it or open other small applications like the SVG viewer.

 Import

 The File menu offers the possibility to import HTML, CSV, Excel files, or database
 content as XML.

 Other Views and Toolbars:

 You can right-click in the toolbar area and use the Configure Toolbars action to see
 what toolbars are available or what toolbars can be removed.

 The Symbols toolbar is quite interesting if you often want to insert symbols that
 are not on the current keyboard.

 Other Small Tips:

 The main Window menu has actions to tile all opened XML documents and also to enable
 synchronous scrolling in them (useful if you want to look at similar XML documents
 and maybe
 to copy/paste between them).

 Keeping in Touch

 Oxygen's Help menu allows you to use the Report problem action to contact us
 directly. The Support Tools->Randomize XML Content action allows you to randomize the
 content of an XML project before sending it to us for tests.

 And there are a lot of other ways to get in touch with us or to find various videos
 or
 tutorials to read: https://www.oxygenxml.com/technical_support.html.

 DITA Project Enhancements

 A DITA project file defines a set of deliverables. For each deliverable you have a
 context containing the published DITA Map and filters. The deliverable also specifies
 one or more transtypes, for each transtype specifying a set of parameter names and
 values. The file format of the DITA Project can be either XML or JSON. So what could we do with the DITA
 Project in Oxygen?

 Publishing

 In the future the DITA Open Toolkit (probably version 3.4 or 4.0) will allow
 publishing multiple deliverables by providing such a DITA project from the command
 line.

 Editing the DITA Project

 We need a special framework containing a schema, custom CSS for editing the DITA
 project in the Oxygen Author visual editing mode. We also need an ANT-based
 transformation scenario for publishing the DITA project.

 Adding the DITA Project in the "Master Files" folder

 Once such a DITA project is added to the "Master Files" folder Oxygen could parse
 it
 and obtain a list of (root map, filter) pairs. We can use this list of root maps
 when renaming or moving content (topics, maps, resources) in the Project view. We
 can use the (root map, filter) pairs to allow in the DITA Maps Manager selecting
 such a pair if somebody wants to edit a topic in such a particular context.

 Using the DITA Project information for editing

 We have a specific drop-down "Filters" button both in the DITA Maps manager view and
 in the main editing area. The button takes effect over all the files opened in the
 application. We also have a "Root map" combo box in the DITA Maps Manager. Again,
 it
 takes effect over all the maps and topics opened in the application. The DITA
 Project would contribute (root map, filter) pairs which could be contributed in the
 UI. Where could we contribute them? Maybe the "Root map" combo box could become a
 "Contexts" combo box listing either DITAVAL files or (map, filter) pairs. If we want
 to allow for certain files people to use certain editing contexts (thus avoiding to
 apply the editing context on a per-application wide basis) we have an architectural
 problem, the DITA Keys resolver is more or less a singleton object, but you would
 need sometimes multiple such keys resolvers.

 Using the DITA Project for the "Validate and check for completeness"
 action

 Right now the "Validate and check for completeness" starts validation from a
 particular DITA Map and has a set of DITAVAL filters which can be set. Maybe if a
 DITA Project is opened in the main editing area, we could have a special
 "Validation" button for it on the toolbar, validating all the DITA Maps with all the
 filters specified inside it.

 DITA Project extensibility

 From what I discussed with Jarno, ideally in the DITA project file we could include
 our own XML tags from a specific namespace. In this way, for a certain deliverable
 context we could for example also define the "reusable" content folders, the
 "images" folders, information which could be used for information displayed in our
 "DITA Reusable Components" view.

 Translating your DITA Project

 Usually when working with a DITA-based project you can either store the project
 contents using a Content Management System (CMS) or some open-source version control
 system like Git or SVN. CMSs usually come with their own translation
 support so this blog post is mostly for end users who use Git or SVN to store
 and collaborate on their DITA project.

 Choosing a Translation Agency

 Ideally your
 translation agency should be able to handle DITA content directly, without you
 needing to convert the DITA to some intermediary format. This means that you will
 have the full benefit of DITA reuse features to minimize translation costs.

 As
 a very important rule, if you plan to translate your project you should get in touch
 with a
 DITA-aware translation agency very early in your project's timeline. Reliable
 translation agencies that translate DITA content directly (for example WHP)
 usually need to have a preliminary discussion with you about how the project is structured,
 what terms need to be skipped when translating, how various measuring units are translated,
 content reuse, taxonomy, and the handling of screenshots that appear in your DITA
 content. So the way that you write your DITA content will be influenced by your
 discussion with the translation agency.

 If your translation agency does not directly
 handle DITA content, there are commercial tools that can be used to convert DITA
 to XLIFF: https://www.maxprograms.com/products/fluenta.html.

 Optimizing Content for Translation

 In general, there are three main principles to take into account when writing DITA
 content that will be translated at some point:

 	Use a controlled vocabulary (usually the Simplified Technical English vocabulary).

 	Avoid reusing inline elements other than product names. The following DITA Users
 List discussion describes the reasons for this: https://lists.oasis-open.org/archives/dita/201301/msg00029.html.

 	Avoid profiling/filtering content at inline level. For the same reasons as (2).

 General DITA Project Structure

 Usually you need to keep a folder that contains all your DITA maps/topics in English
 and have separate folders for other languages with equivalent DITA topics translated
 in that specific language. This article could be useful: https://www.maxprograms.com/articles/organize_files.html.

 General Translation Workflow when the Translation agency accept DITA documents

 When translating DITA content, the most common process involves these steps:

 	You create your content in the primary language using a DITA authoring tool
 (Oxygen XML Editor).

 	Before each release, you gather all the DITA topics that have been changed and
 need to be translated. The Oxygen Translation Package Builder plugin might be
 handy for this.

 	Send a copy of the relevant DITA files to the translation agency (known also as
 "localisation service provider").

 	Receive translated DITA content back from the translation agency and integrate
 it in each language-specific project folder.

 Translation Workflow when the Translation agency accepts XLIFF files

 XLIFF (XML Localization Interchange File Format) is an XML-based format
 created to standardize the way data are passed between and among tools during a localization
 process. If your translation agency accepts this format, the translation workflow
 usually
 has these steps:

 	At various milestones (for example, when a new version is released), you generate
 XLIFF files for each language you translate to.

 	You send the XLIFF file to the translation service provider.

 	Once the XLIFF returns from translation, you generate a translated version of your
 map
 and topics from the XLIFF file.

 Important: The Fluenta DITA Translation add-on can help with all
 of these steps.

 Publishing your Translated Content

 All your translated DITA maps and topics should have the xml:lang attribute set with
 the appropriate value on the root element. Besides the actual translated content,
 the
 published output may contain various static text (such as the word Table followed by
 the table number, Figure following by the number, or Note appearing before
 each DITA <note> content). The DITA Open Toolkit includes
 support for various languages for HTML-based output and PDF-based output. You can also add support for other languages:
 http://www.dita-ot.org/dev/topics/plugin-addgeneratedtext.html#ariaid-title1. There is also a specific topic that describes how to add
 a new language to the Oxygen-specific WebHelp Responsive output: https://www.oxygenxml.com/doc/ug-editor/topics/localize-webhelp-responsive.html.

 Liability

 So who is responsible for a bad translation that may produce damage to a client following
 a
 set of mis-translated steps? From my discussions with translation service providers,
 the
 translation agencies do not assume any liability for incorrectly translated content.
 Usually
 a company that needs to translate their DITA content in multiple languages has
 regional headquarters in various countries and somebody from the company's regional
 headquarters would be responsible to review and accept the translated content as
 appropriate.

 This concludes my DITA translation overview. As we do not translate the Oxygen User's
 Manual in various languages, our internal knowledge of translating DITA content is
 quite limited so any feedback on this small article is welcomed.

 DITA Map Validate and Check for Completeness Overview

 The Validate and Check For Completeness is an action available on the DITA Maps
 Manager view toolbar and it can be used to perform thorough checks on the entire DITA
 Map structure and set of referenced topics. We've made this action available to you a
 couple of years ago and during these years, based on your direct feedback we kept
 adding
 additional checks and functionality to it. We always took care to optimize the processing
 speed in order to allow for validating projects containing thousands of resources
 in 10-15
 seconds.

 In this blog post I will try to make a list of all the checks that the action does
 in order
 to ensure you that your DITA content is valid and proper:

 	Validate each DITA resource directly or indirectly referenced from your DITA
 Map with its associated DTD or XML Schema and report any errors which
 may arise.

 	Validate each DITA resource with an additional Schematron resource which
 you can provide. Schematron is quite handy when it comes to enforcing internal
 rules on the DITA content and we use it quite a lot for checking our user's manual.

 	Batch validate referenced DITA resources. This setting validates each DITA
 resource according to the validation scenario associated with it in Oxygen. This
 will decrease the validation speed quite a bit but if you have DITA 1.3 resources
 which are Relax NG based you should check it in order to validate each resource
 according to the Relax NG Schema.

 	Use specific DITAVAL or profiling condition filters when performing the
 validation. From a single published DITA Map you may get multiple publications
 based on the profiling filters applied. Because these filters are used to remove entire
 topics or parts of topics, you may have links and conrefs which become
 invalid when certain filters are applied on the map. So it makes sense to validate
 your
 DITA project by applying all profiling filters you would apply when publishing it
 in order
 to be aware of these potential broken references.

 	Report profiling attributes or values which are not valid according to the Subject
 Scheme Map associated with your project. You can read more about controlling
 profiling attributes and values here:Controlled Attribute Values for your DITA Project.

 	Identify possible conflicts in profile attribute values. When the profiling attributes
 of a topic contain values that are not found in parent topic profiling attributes,
 the
 content of the topic is overshadowed when generating profiled output.

 	Check the existence of non-DITA referenced resources. You will get reports if
 links to local images or other resources are broken. You can also decide to verify
 the
 existence of remote links. For example if you have links to various external web sites,
 you might be interested in seeing if those remote servers are still there.

 	 Report links to topics not referenced in DITA maps. Checks that all referenced topics
 are linked in the DITA map. Otherwise you may get working links to topics which are
 not
 included in the table of contents.

 	Check for duplicate topic IDs within the DITA map context. By default the topic ID
 can
 be used in the WebHelp output for context sensitive help. Also certain CMSs require
 that a certain topic ID would be unique in the entire DITA Map.

 	Report elements with the same ID placed in the same DITA Topic according to the
 specification.

 	Report missing domains attribute which may indicate an improper DITA
 specialization.

 	Report invalid class attribute values according to the specification.

 	Report invalid key names according to the specification.

 	Report references to missing keys or links which refer to keys
 which have no target resource defined on them.

 	Report problems when elements referenced using DITA content reference range are not
 siblings or are not properly sequenced.

 	Report links which have no target set on them either via href or
 keyref.

 	Report non-portable absolute references to DITA resources.

 	Report when links contain invalid encoded characters or Windows-like path
 separators.

 	Report when resources are referenced with incorrect path capitalization.

 	Report a mismatch between the referenced resource type and its format
 attribute.

 	Report a mismatch between the referenced resource type and its type
 attribute.

 	Report topic references in a DITA Map pointing to non-topic elements in the
 target topics.

 	Report invalid content references and content key references, references to non-existing
 resources, to non-existing IDs, report when the source element is not a specialization
 of
 the target element.

 I think I covered most of the checks that this validation does.

 Are there other checks you would like to see in a future version? Would you like to
 see this
 validation available as a separate process which could be run on a server?

 Schematron Checks to help Technical Writing

 The Oxygen XML Editor User's Manual is written in DITA. In an older post I described in more detail how we collaborate internally on our
 User's Guide Project. And we also made available a copy of our User's Manual as a
 project on
 GitHub.

 During these years on working on it, we progressively developed a set of simple rules
 which
 were originally kept in a plain text document. The problem is that nobody can really
 remember
 all these rules when actually writing. So recently we started to migrate these rules
 to
 Schematron and have them reported automatically has validation warnings and errors
 while
 editing the topics. And we can also add quick fixes for each of these problems.

 So below I will try to tell you what each rule imposes and what it's Schematron implementation
 looks like. If you want to quickly test these rules on your side, you can add them
 to the
 Schematron file which is used by default to validate DITA topics located in:
 OXYGEN_INSTALL_DIR/frameworks/dita/resources/dita-1.2-for-xslt2-mandatory.sch.

 	Try as much as possible to add at least an indexterm element in each
 topic. This is useful when the Index page is created for the PDF output or the
 Index tab is created for the WebHelp output. As this is not a requirement, we
 wanted to report this issue as an error. The end result looks like this:
[image: ../images/image1.png]
 And the Schematron pattern looks like
 this:
 <pattern xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
 <rule context="/*">
 <assert test="prolog/metadata/keywords/indexterm" role="warn" sqf:fix="addFragment">
 It is recommended to add an 'indexterm' in the current '<name/>' element.
 </assert>
 <!-- Quick fix to add the indexterm element element and its parents -->
 <sqf:fix id="addFragment">
 <sqf:description>
 <sqf:title>Add the 'indexterm' element</sqf:title>
 </sqf:description>
 <sqf:add match="(title | titlealts | abstract | shortdesc)[last()]" position="after" use-when="not(prolog)">
 <xsl:text>
 </xsl:text><prolog xmlns=""><xsl:text>
 </xsl:text><metadata><xsl:text>
 </xsl:text><keywords><xsl:text>
 </xsl:text><indexterm><xsl:text> </xsl:text> </indexterm><xsl:text>
 </xsl:text></keywords><xsl:text>
 </xsl:text></metadata><xsl:text>
 </xsl:text></prolog>
 </sqf:add>
 </sqf:fix>
 </rule>
</pattern>

 	The ID of each topic must be equal to the file name (minus the extension). One of
 the outputs
 we produce (I think CHM) had a limitation when building the context mapping between
 help IDs
 and actual HTML content so this was an important rule for us, thus an error is reported
 on
 this. Also a quick fix is added to auto-correct the topic ID based on the file name.
 The end
 result looks like this:
[image: ../images/image2.png]
and the Schematron pattern
 is:
 <!-- Topic ID must be equal to file name -->
<sch:pattern>
 <sch:rule context="/*[1][contains(@class, ' topic/topic ')]">
 <sch:let name="reqId" value="replace(tokenize(document-uri(/), '/')[last()], '.dita', '')"/>
 <sch:assert test="@id = $reqId" sqf:fix="setId">
 Topic ID must be equal to file name.
 </sch:assert>
 <sqf:fix id="setId">
 <sqf:description>
 <sqf:title>Set "<sch:value-of select="$reqId"/>" as a topic ID</sqf:title>
 <sqf:p>The topic ID must be equal to the file name.</sqf:p>
 </sqf:description>
 <sqf:replace match="@id" node-type="attribute" target="id" select="$reqId"/>
 </sqf:fix>
 </sch:rule>
</sch:pattern>

 	Report when plain links or related links to web resources have the same text inside
 them as
 the value of the @href attribute. We had cases in which writers would input web links
 like
 this:
 <xref href="http://www.google.com" format="html" scope="external">http://www.google.com</xref>
which
 is redundant because when you set no text to the link, the publishing uses the @href
 attribute value as the link text. So we wanted to report such cases as warnings and
 to have
 a quick fix which removes the link text:
[image: ../images/image3.png]
The Schematron pattern looks like
 this:
 <sch:pattern>
 <sch:rule context="*[contains(@class, ' topic/xref ') or contains(@class, ' topic/link ')]">
 <sch:report test="@scope='external' and @href=text()" sqf:fix="removeText">
 Link text is same as @href attribute value. Please remove.
 </sch:report>
 <sqf:fix id="removeText">
 <sqf:description>
 <sqf:title>Remove redundant link text, text is same as @href value.</sqf:title>
 </sqf:description>
 <sqf:delete match="text()"/>
 </sqf:fix>
 </sch:rule>
</sch:pattern>

 	Avoid using the @scale attribute on images. We wanted to smooth scale images in an
 external image editor so it was prohibited to use the @scale attribute on images. The
 Schematron pattern for
 this:
 <pattern>
 <rule context="*[contains(@class, ' topic/image ')]">
 <assert test="not(@scale)">
 Dynamically scaled images are not properly displayed, you
 should scale the image with an image tool and keep it within
 the recommended with and height limits.
 </assert>
 </rule>
</pattern>

 We have an upcoming event dedicated to Schematron Quick Fixes if you want to become more
 familiar with the technology. And we also have a GitHub project which tries to combine the notion of a
 style guide for writing documentation inside a company with a very simple manner of
 defining
 checks which can be applied to impose the styleguide rules.

 I would be interested in your feedback, especially if you have checks that you perform
 right
 now on your content and you consider that they might benefit others.

 Implementing your own Style Guide

 Let's say you are a team of tech writers collaborating on a DITA-based project and
 doing
 things your way, maybe you have various best practices about what elements to use
 and when to
 use them, maybe you want to impose a set of controlled values for certain attributes.
 So at
 some point you gather on an internal server a set of HTML resources which explain
 how various
 DITA elements should be used. This blog post will attempt to show you how these best
 practices
 can be shared with your team so that they are readily available when editing DITA
 content in
 Oxygen.

 Custom "Style Guide" toolbar button

 As you
 have your style guide HTML resources on a server, you can add a custom toolbar button
 which
 will appear on the DITA toolbar when editing DITA topics in the Author editing mode.
 When you press that toolbar button, a web browser opens up and shows you the style
 guide
 main page. Here are some steps about how to do this:

 	In the Oxygen Preferences->Document Type Association page edit the DITA
 framework. Instead of editing the DITA framework directly you may choose to extend
 it in
 order to share the extension more easily:Document Type Extension Sharing.

 	In the Author tab go to the Actions tab and there is an action with the
 ID styleguide. If you edit the action, it invokes an operation with a parameter
 called resourcePath. You can edit that parameter to point to your internal (or
 public) server where the WebHelp output is stored. You should also set an icon to
 it,
 you can use /images/BrowseReferenceManual16.png (it's a default icon which comes
 with Oxygen). Save your changes in that dialog.

 	In the Author tab there is a Toolbar sub-tab in which you can add the
 styleguide action to the toolbar in the place where you want it. Press
 OK a couple of times in the dialogs and then action should become available on
 the toolbar for each topic.

 [image: ../images/image14.png]

 Link to Style Guide for each element in the content
 completion window

 When you press the ENTER key in the Author editing mode,
 you get a list of available elements. For each element there is documentation available,
 that documentation can be customized, for example you could add links for each element
 to a
 specific section in your style guide. This topic should tell you more about how this
 can be
 achieved:https://www.oxygenxml.com/doc/ug-editor/#tasks/author-styleguide-annotations.html

 [image: ../images/image15.png]

 Impose controlled attribute values

 For certain attributes (for example profiling attributes, @outputclass attributes)
 you may want to impose a set of controlled attribute values. This blog post will tell
 you
 how: Controlled Attribute Values for your DITA Project.

 Show validation errors or warning when guidelines are breached

 If possible, some of your rules can be converted to Schematron, allowing the application
 to
 signal to the writer when a rule is not obeyed. You can also add quick fixes to show
 writers
 various ways to rectify the problem. This blog post should give you more details about
 this:Schematron Checks to help Technical Writing.

 Bringing all of this together

 There is an Oxygen XML GitHub project called DIM which attempts to approach most of
 these aspects in an unified manner: https://github.com/oxygenxml/dim.

 Preprocessing DITA-OT Project Files

 Project files were introduced in the DITA-OT 3.4 release. They provide a
 standardized XML way to define how input DITA files should be published to output
 content files, including details such as filtering, transformation parameters, and
 output directory locations.

 Our basic publishing requirements are as follows:

 	

 We publish some books multiple times in multiple DITAVAL filtering
 conditions.

 	

 We publish to both PDF (using PDF Chemistry) and online help (using Oxygen
 WebHelp).

 	

 PDFs are published individually per-book.

 	

 WebHelp is published as a collection of books, with in-help links to the
 PDF files.

 	

 We have "review" and "final" versions of our output.

 	

 These versions use different DITA-OT parameters and different DITAVAL
 flagging files.

 As I attempted to create a DITA-OT project file to produce our deliverables, I
 encountered some limitations. This blog post describes how I created an XSLT-based
 preprocessing approach to work around these limitations.

 Quick Overview of Project Files

 A project file uses three primary building block elements:

 	

 <content> - an input DITA map to process

 	Can include one or more associated DITAVAL files

 	

 <publication> - a transformation to apply

 	Can include transformation parameters

 	

 <deliverable> - output content to create, by transforming
 a <context> with a <publication>

 	Can include an output subdirectory path (relative to the overall output
 directory)

 In its simplest form, a <deliverable> can provide its own
 <context> and <publication> information
 within itself:

[image: ../images/context_publication.svg]

 For more complex output content situations, a <deliverable> can
 reference shared <context> and <publication>
 elements by @idref references to @id values:

[image: ../images/idref_context_publication.svg]

 This @idref mechanism allows many deliverables to share common
 context and publication definitions. If there is a change to a
 <context> (perhaps a different map or new DITAVAL condition)
 or a <publication> (perhaps an updated DITA-OT parameter), then
 all relevant deliverables inherit the change automatically.

 In addition, DITA-OT project files can use <include> statements
 to structure their information across multiple files. This allows contexts to be
 organized by product writer teams, publications to be placed in files maintained by
 a DITA environment maintainer, and so on.

 Limitation – Specify Per-Deliverable PDF File Names (#3682)

 When I publish multiple PDFs from the same map using DITAVAL conditions, I needed
 to
 define the outputFile.base parameter on a
 per-<deliverable> basis to control the output PDF file
 name:

[image: ../images/deliverable_pdf_name.svg]

 DITA-OT versions before 4.0 do not allow <param> elements to be
 controlled from a <publication> reference in a
 <deliverable>. I filed the following DITA-OT enhancement
 request for this:

 #3682: In DITA-OT project files, allow a
 PDF <deliverable> to specify its output file name

 It was implemented for DITA-OT 4.0 in the following pull request:

 #3907: Support param in publication reference

 Limitation – Consider DITAVAL in Both <context> and <publication>
 (#3690)

 I needed to apply DITAVAL from both <context> (for
 @product filtering) and <publication> (for
 @audience/@deliveryTarget/@rev
 filtering/flagging of "review" and "final" deliverables):

[image: ../images/publication_profiling.svg]

 DITA-OT versions before 4.0 do not properly combine <context> and
 <publication> DITAVAL filtering. I filed the following
 DITA-OT issue for this:

 #3690: In DITA-OT project files, apply
 both <context> and <publication> DITAVAL filtering

 It was implemented for DITA-OT 4.0 in the following pull request:

 #3907: Add profiles to publication project file

 Using Preprocessing to Work Around the Limitations

 To work around these limitations in earlier DITA-OT versions before 4.0 is released,
 I created an XSLT file to do the following:

 	

 Read the input DITA-OT project file

 	

 Resolve <include> statements to pull all content
 into a single file

 	

 Convert all DITAVAL file references to absolute paths (to work around
 #3873)

 	

 In <deliverable> elements, replace all
 @idref'ed <context> and
 <publication> elements with copies of the referenced
 elements (so we can modify them per-<deliverable>)

 	

 Find <param> elements in
 <deliverable>, move them to
 <publication> instead (to work around #3682)

 	

 Find <ditaval> elements in
 <publication>, move them to
 <context> instead (to work around #3690)

 I then applied this XSLT file as a preprocessing step to translate the unsupported
 project file constructs into supported constructs in a temporary preprocessed
 project file, then ran DITA-OT publishing using that temporary file. For
 example,

 #!/bin/bash
rm -rf ./out

export DITAOT=$(dirname $(dirname $(which dita)))
export SAXON_JAR=~/saxon/saxon-he-10.6.jar

echo "Creating preprocessed DITA-OT project file..."
java \
 -jar ${SAXON_JAR} \
 -xsl:frameworks/dita/preprocess_project_file.xsl \
 -s:project.xml \
 -o:project.xml-preprocessed.xml

echo "Publishing preprocessed DITA-OT project file..."
${DITAOT}/bin/dita --project project.xml-preprocessed.xml -t temp --verbose

rm project.xml-preprocessed.xml

 This worked well from a linux command line, but we also needed our writers to be able
 to run it from Oxygen. To do this, I created a copy of Oxygen's project file build
 script at

 <OXYGEN_INSTALL>/frameworks/dita/dita_project/build_dita_project.xml

 and added similar XSLT preprocessing to it using Ant commands, then placed the
 modified version at

 frameworks/dita/build_dita_project_preprocessed.xml

 in our Oxygen project directory. Then I extended the DITA-OT project file framework
 and created an extended DITA-OT project file transformation pointing to the modified
 build script:

[image: ../images/ditaot_project_file_transformation.png]

 This new transformation allowed Oxygen to publish project files that used the
 preprocessing workaround. The unsupported constructs still result in schema
 violations when the original (non-preprocessed) project files are opened for editing
 in Oxygen, but at least the publishing aspect works.

 Note:

 The preprocessing XSLT stylesheet requires Saxon to run. To support, this, the
 preprocessing-based DITA-OT project transformations specify a list of additional
 .jar libraries to use. To see these libraries, click
 the Libraries button in the dialog box shown above.

 The following Oxygen project demonstrates this preprocessing approach:

 preprocessed_ditaot_project_files.zip

 To run it,

 	

 Extract the archive and open OPENME.xpr in Oxygen.

 	

 In the Project view, expand the Main
 Files list, right click on deliverables-all.xml and choose
 Transform > Transform With, and choose the
 Publish Preprocessed DITA-OT Project (all
 deliverables) transformation.

 This will build "review" and "final" versions of both the "Product A" and
 "Product B" online help collections in the out/
 directory, complete with correctly-named PDF files integrated into each
 online help collection.

 There are other deliverable files for specific subsets of deliverables,
 organized into logical folders in the Main Files
 list.

 To view the XSLT stylesheet without downloading the archive, click on the following
 link:

 preprocess_project_file.xsl

 There are comments in the code to explain how it works.

 Exploring How the XSLT Transformation Works

 To help you explore how the XSLT transformation works, the Oxygen project also makes
 it available as a refactoring operation that you can manually preview on project
 files.

 To do this,

 	

 In the Project view in the Main
 Files list in the project_files/
 directory, right-click one of the deliverable*.xml
 files, then choose Refactoring > XML refactoring.

 	

 In the refactoring operation list, choose Synopsys > Preprocess
 DITA-OT project file refactoring operation.

 	

 Click the Preview button to see what the XSLT
 transformation would do.

 For example,

[image: ../images/refactoring_preview.png]

 Be sure not to actually apply the refactoring operation to the file. Otherwise, you
 will need to re-extract the archive to restore the original project file.

 Re: 10 reasons for moving away from DITA

 I'm following Tom Johnson @tomjohnson on Twitter and so should you for
 the very interesting articles related to technical documentation. One of his recent posts reminded us about the 10 reasons for moving away from DITA article
 he wrote about 7 years ago so I re-visited the article and I wanted to reply to each
 of
 the points he makes in the 10 reasons to move away from DITA section, 7 years
 after his original post:

 	1. DITA doesn't easily integrate into existing web frameworks.

 	I think the DITA to Markdown transformation developed
 by Jarno Elovirta (which is freely available in the DITA Open Toolkit) has
 opened the possibility of using static web site generators. Here is an
 article I wrote where I investigated using the MKDocs
 static site generator:

 	Publishing DITA Content Using the MKDocs Web Site Generator.

 	2. DITA doesn't easily integrate with JavaScript libraries.

 	Again, once you can publish DITA to Markdown, you can use the existing
 static web site generator infrastructure.

 	3. I never bought into DITA's information typing model.

 	I partially agreed, as most writers who are not externally constrained by
 the company or by some publishing customization to use explicit topic types
 (me included) would use the base DITA topic type for all of
 their work.

 	4. Writing in XML is a chore.

 	For me, when writing in Markdown, adding paragraphs is easy, but when adding
 links, image references, or tables, it is a chore. It depends on what you
 are comfortable with and what you use every day. If I were to write Markdown
 every day, I would start to remember how I should encode a link and consider
 it a natural way of doing things. But indeed, using a plain text editor to
 write in XML is more difficult, in general. With a visual editing tool, it
 is much easier.

 	5. Open-source DITA solutions develop too slowly.

 	If we are discussing storage, DITA content (the content of this blog for
 example) can be stored in Git repositories and used with regular Git client
 tools: DITA For Small Technical Documentation Teams.

 	If we are discussing the publishing ecosystem, once you can publish DITA to
 plain HTML or Markdown using the DITA Open Toolkit, you can benefit of all
 web based tools available for Markdown and plain HTML content.

 	6. You can't easily customize the output.

 	
 Again, it depends on what you are comfortable with. You can use Markdown
 content produced from DITA XML content with static web site generators
 like MKDocs or Jekyll. Indeed, if you use (for example)
 DITA to produce Oxygen WebHelp, although most of the customizations are
 made with CSS, you might still need to use XSLT for more advanced
 customizations. But as someone who spent hours trying to understand why
 Hugo does not properly follow links between articles, there
 is a learning curve for anything, and every static web site generator
 out there has its own configuration capabilities that need to be learned
 and explored. Also, once you get comfortable with a certain publishing
 process, you naturally consider that one easy and the others more
 difficult.

 About publishing DITA to PDF, the default customization
 capabilities for the classic DITA to PDF publishing require knowledge of
 both XSLT and XSL-FO. This is why we invested in the Oxygen Chemistry
 CSS-based PDF processor, to be able to style the content using CSS and then
 use the CSS both for WebHelp and PDF publishing: https://styles.oxygenxml.com/.

 	7. DITA doesn't integrate well with other non-DITA content.

 	

 DITA content integrates well with Markdown. We contacted Tom less than a
 year ago to again explore Oxygen's capabilities with a docs-as-code
 approach and his well thought out and complete article about combining
 DITA XML with Markdown is available here: https://idratherbewriting.com/learnapidoc/pubapis_oxygenxml.html.

 In recent Oxygen versions, we also explored integrating other file types
 like Word or HTML directly with DITA projects: https://www.oxygenxml.com/doc/ug-editor/topics/dynamically_convert_word_excel_html_markdown_to_dita.html.

 	8. Everything I wanted to do with DITA, I can do with Markdown and Liquid on
 Jekyll.

 	I am not familiar with Liquid, but I agree there are indeed ways that you
 can also reuse content with Markdown, not part of a standard but part of how
 a particular framework decided to support such extensions, making the
 solution 100% not portable when switching between web-based frameworks. I do
 think there are more powerful ways to check if the structure is correct with
 XML-based standards using Schematron. The Oxygen Validate and check for
 completeness action also does a lot of consistency checks.

 	An article about thoughts on Markdown: https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/.

 	9. Innovation with DITA is too reliant on vendors.

 	Once you can obtain plain HTML and plain Markdown from DITA XML content, you
 can benefit from all the tools created to process and display HTML and
 Markdown. The web tools publishing space is much more dynamic than the DITA
 XML publishing space. For me, looking into the web tools space from the
 outside, it's in a constant turmoil of innovation, which brings stress to
 any web developer who might want to choose a framework since there are so
 many frameworks developed over night while re-inventing solutions for the
 same concepts in different ways that you end up not knowing what to choose
 and with the Markdown content containing various framework-specific
 extensions not being able to easily switch between them. It's like tearing
 down the entire house and re-inventing it each day and sometimes forgetting
 about various problems that have been fixed in the previous iteration. While
 Markdown might now be the future winning format when it comes to web tools,
 some innovators want to switch to JSON even for writing web content: https://www.smashingmagazine.com/2022/02/thoughts-on-markdown/.

 	10. DITA is the wrong language for the API doc space.

 	I would like to further explore using DITA XML in the API docs space, that's
 for sure. Now days, I think by "API Docs", most people would be referring to
 Swagger, OpenAPI documentation, mostly API documentation for web-based end
 points. I experimented a bit using widdershins to generate
 documentation from API docs to Markdown and then converting this Markdown
 content to DITA XML, converting the DITA content to WebHelp Responsive.
 Also, I'm not sure if the API docs world is larger than web-based end points
 using REST, but there are other programming languages as well but probably
 most API documentation is about accessing server end points now days.

 So these are my brief remarks on Tom's 10 reasons to move away from DITA article
 written some 7 years ago. Any feedback is welcomed as usual.

 DITA 2.0 Specification Support Cheat Sheet

 You can use the Convert DITA 1.3 topics and maps to the DITA 2.0 standard XML
 refactoring action bundled with Oxygen 24 (or later) to convert DITA 1.3 content to
 the
 DITA 2.0 standard. The same XML refactoring action is also available as a separate
 GitHub project: https://github.com/oxygenxml/dita_1_3_to_2_x_converter.

 The DITA Open Toolkit publishing engine will support publishing a mix of DITA 1.3
 and 2.0
 topics and maps. The list of supported DITA 2.0 features in the publishing engine
 is
 available here: https://www.dita-ot.org/dev/reference/dita-v2-0-support.html.

 DITA 2.0 Support Cheat Sheet

 	Change

 	Details

 	Handled By Conversion

 	Supported in DITA OT Publishing Engine

 	The DITA 2.0 topics/maps have specific schema references.

 	References to DTD/XML Schema/RNG schemas need to be changed in
 all topics and maps.

 	Yes

 	Yes

 	Removed elements:

 titlealts, itemgroup, topicset, topicsetref,
longquoteref, anchor, anchorref, hasInstance,
hasKind, hasNarrower, hasPart,
hasRelated, relatedSubjects, subjectRelTable,
subjectRelHeader, subjectRel, subjectRole

 	Removed some seldom used elements.

 	Yes, automatically removes the elements and shows messages for
 each removed element.

 	-

 	Removed attributes:

 @mapkeyref, link/@query, hazardsymbol/@longdescref,
@xtrf, @xtrc,
@spectitle,@specentry

 	Removed some seldom used attributes.

 	Yes, automatically removes the attributes and shows messages for
 each removed attribute.

 	-

 	Removal of
 @navtitle/@locktitle/@lockmeta
 attributes

 	Removed deprecated attributes, they can be replaced with
 equivalents.

 	Yes, automatically converts them to
 <topicmeta> equivalents.

 	Yes

 	Removal of @domains default attribute.

 	This is a default attribute that does not appear in the topic and
 map instances. It was used mostly for defining new attribute
 specializations, and all attribute specialization schemas need to be
 re-written to use the new @specializations default
 attribute.

 	-

 	Yes

 	

 Removal of @copy-to attribute

 	Needs to be replaced with a <resourceid>
 element.

 	Yes

 	No

 	Removal of the @print attribute

 	Needs to be replaced with the @deliveryTarget
 attribute.

 	Yes

 	-

 	Removed <substep> and
 <substeps> task elements

 	Needs to be replaced with the <steps> and
 <step> elements.

 	Yes

 	No

 	Removed <sectiondiv> element.

 	Needs to be replaced with the <div>
 element.

 	Yes

 	-

 	Added new <audio> and
 <video> elements.

 	New elements were added to refer to multimedia audio and video
 content and to define parameters.

 	-

 	Partially

 	Added new and
 elements

 	New elements similar in style to and
 <i> but with more semantics.

 	-

 	No

 	Added new <partno>,
 <hwcontrol>.

 	New elements for documenting hardware.

 	-

 	No

 	Added new <diagnostics>,
 <diagnostics-general>,
 <diagnostics-steps> elements.

 	New elements added to the troubleshooting topic type.

 	-

 	-

 	Added new <include> element.

 	Similar to <coderef>.

 	-

 	Yes

 	Titles, cell and row span attributes for
 <simpletable> elements.

 	Simple tables can have titles and their cells can span rows and
 columns.

 	-

 	Yes

 	Style output using ditaval @outputclass
 attribute.

 	Profiling attributes defined on DITA elements can be converted to
 custom @class attribute values in the generated HTML
 output by adding specific @outputclass attributes on
 the filters in the ditaval filter file.

 	-

 	Yes

 	Added new <keytext> element.

 	Used to simplify syntax for defining a key pointing to a small
 text fragment.

 	-

 	No

 	New Bookmap <mapresources>
 element.

 	A wrapper for various elements like
 <keydef>,
 <ditavalref> which could not be used on
 the first level of the DITA Book Map.

 	

 	

 Refactoring

 Sorting Glossary Lists in a DITA Bookmap

 The idea behind this DITA refactoring action started from this forum post: https://www.oxygenxml.com/forum/viewtopic.php?f=2&t=15284&p=45137#p45137.

 Suppose you have a DITA Bookmap that at some point references all of its glossary
 entries:
 <glossarylist>
 <topicref href="glossary/glossItem1.dita"/>
 <topicref href="glossary/glossItem2.dita"/>
 <topicref href="glossary/glossItem3.dita"/>
 <topicref href="glossary/glossItem4.dita"/>
 </glossarylist>
and
 you want to have all of these glossary topics sorted alphabetically by title as they
 appear in
 the PDF output.

 One option for this is to create a PDF customization that automatically sorts the
 glossary entries no matter what order they were originally specified in the DITA Map.

 The other option is to create a custom Oxygen XML Refactoring operation that, when
 applied on the DITA Bookmap containing the "glossarylist", will sort the glossentries
 in
 alphabetical order according to the title of each glossentry.

 The following steps will help you achieve this:

 	

 Somewhere on disk, create a folder (for example, customRefactor) and add a
 reference to it in the Oxygen Preferences->"XML / XML Refactoring" page.

 	

 In that custom folder, create an XML file (for example, sortGlossentries.xml)
 that has the following content:

 <refactoringOperationDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="op_tck_rp1_hcb" name="Sort glossentries">
 <description>Sort glossentries.</description>
 <script type="XSLT" href="sortGlossentries.xsl"/>
</refactoringOperationDescriptor>

 This particular descriptor file contains the name of the operation, its description,
 and points to an XSLT stylesheet that will be applied to sort the entries in the DITA
 Bookmap.

 	

 In the same folder, create a file called sortGlossentries.xsl with the following
 content:

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">
 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="glossarylist | topicgroup[@outputclass='glossarylist']">
 <xsl:copy>
 <xsl:apply-templates select="@*"/>
 <xsl:variable name="closestXMLLang" select="ancestor-or-self::*[attribute::xml:lang][1]/@xml:lang"/>
 <xsl:choose>
 <xsl:when test="exists($closestXMLLang)">
 <xsl:for-each select="*" >
 <xsl:sort select="document(@href, .)/*/glossterm/text()" lang="{$closestXMLLang}" case-order="lower-first"/>
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:for-each select="*" >
 <xsl:sort select="document(@href, .)/*/glossterm/text()" case-order="lower-first"/>
 <xsl:apply-templates select="."/>
 </xsl:for-each>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>

 This particular XSLT processing copies almost all the Bookmap content unchanged.
 However, the topicrefs in the glossarylist are sorted according to the
 glossterm titles specified inside each of them.

 	

 Restart Oxygen.

 	

 Open the bookmap that contains the glossarylist in the Oxygen main editing area,
 right-click, choose Refactoring and in the Other operations submenu you
 will find the new Sort glossentries refactoring action. Invoke the action and use
 the Preview button to check if the sorting is properly done.

 The XML Refactoring XML descriptor and XSLT stylesheet can also be found here: https://github.com/oxygenxml/dita-refactoring-examples/tree/master/18.%20Sort%20Glossentries.

 Replacing Direct Image References with Key References in a DITA Project.

 Suppose that you have a large DITA project and all the image references in your topics
 are direct references, using the @href attribute like
 this:
 <image href="../../images/Iris_sanguinea.jpg" scale="50"/>
For
 better scalability and reuse possibilities, suppose you want to convert these direct
 references to DITA 1.2 key
 references:
 <image keyref="Iris_sanguinea.jpg" scale="50"/>

 Doing something like this manually means making replacements in hundreds of places
 and also
 manually building a DITA map that maps the image file name to the image location.

 This blog post will try to describe some steps that you will help you to automate
 this change
 in your project:

 	The first big step is to generate the DITA Map that maps each image file name (which
 will be used as a key) to the image location. So, the generated DITA map will look
 like
 this:
 <!DOCTYPE map PUBLIC "-//OASIS//DTD DITA Map//EN" "map.dtd">
<map>
….…....
<keydef href="Iris_sanguinea.jpg" keys="Iris_sanguinea.jpg"/>
…...
</map>
We
 will assume that all images are placed in an images folder and we can create an
 ANT build file that lists all the images in a parameter and then calls an
 XSLT script to process the list of images
 further:
 <project basedir="." name="Create Image Keys Definition Map">
 <fileset id="dist.contents" dir="images/" includes="*"/>
 <property name="prop.dist.contents" refid="dist.contents"/>
 <xslt in="createKeyrefsMap.xsl" style="createKeyrefsMap.xsl" out="images/imageKeydefs.ditamap" destdir=".">
 <param name="filesList" expression="${prop.dist.contents}"/>
 </xslt>
</project>

 The
 XSLT stylesheet createKeyrefsMap.xsl is responsible for creating the
 mapping DITA
 map:
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="1.0">
 <xsl:param name="filesList"/>
 <xsl:output doctype-public="-//OASIS//DTD DITA Map//EN" doctype-system="map.dtd" indent="yes"/>
 <xsl:template match="/">
 <map>
 <xsl:call-template name="tokenizeString">
 <xsl:with-param name="list" select="$filesList"/>
 </xsl:call-template>
 </map>
 </xsl:template>
 <xsl:template name="tokenizeString">
 <xsl:param name="list"/>
 <xsl:param name="delimiter" select="';'"/>
 <xsl:choose>
 <xsl:when test="contains($list, $delimiter)">
 <keydef href="{substring-before($list,$delimiter)}" keys="{substring-before($list,$delimiter)}"/>
 <xsl:call-template name="tokenizeString">
 <xsl:with-param name="list" select="substring-after($list,$delimiter)"/>
 </xsl:call-template>
 </xsl:when>
 <xsl:otherwise>
 <keydef href="{$list}" keys="{$list}"/>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:template>
</xsl:stylesheet>

 After
 this step you will have a new DITA map with all image mappings and afterwards you
 can
 link it in your main project's DITA map.

 	We still need to make changes to all DITA topics and replace all image hrefs with
 keyrefs. Oxygen has support for XML Refactoring actions and you can define custom
 XSLT scripts that can be applied to modify an entire set of topics. In the
 OXYGEN_INSTALL_DIR/refactoring folder, you can add an XSLT script along with an
 XML description of the refactoring action. An XSLT script that would replace
 @href attributes on images with @keyref would look like
 this:
 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 version="2.0"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:f="http://www.oxygenxml.com/ns/functions">
 <xsl:function name="f:getKeyref" as="xs:string">
 <xsl:param name="element" as="element()"/>
 <xsl:variable name="imageFile" select="tokenize(translate($element/@href, '\', '/'), '/')[last()]"/>
 <xsl:variable name="key" select="substring-before($imageFile, '.')"/>
 <xsl:value-of select="$key"/>
 </xsl:function>
 <xsl:template match="node() | @*">
 <xsl:copy>
 <xsl:apply-templates select="node() | @*"/>
 </xsl:copy>
 </xsl:template>
 <xsl:template match="image[@href and not(@keyref)]">
 <xsl:copy>
 <xsl:apply-templates select="@* except @href"/>
 <xsl:attribute name="keyref" select="f:getKeyref(.)"></xsl:attribute>
 <xsl:apply-templates select="node()"/>
 </xsl:copy>
 </xsl:template>
</xsl:stylesheet>
You
 can right-click anywhere in the DITA Maps Manager view and choose
 Refactoring->XML Refactoring, then use your custom refactoring action to modify
 all resources.

 A set of samples, including the build file, XSLT stylesheets, and refactoring action
 XML
 descriptor can be found here:https://www.oxygenxml.com/forum/files/batchImageHrefToKeyref.zip.

 Deleting Elements in a Refactoring Operation

 Recently, a writer wanted to remove the index from their DITA book. This required
 the
 following:

 	

 Removing the <indexlists> element from the map:

 <backmatter>
 <booklists>
 <indexlist/>
 </booklists>
</backmatter>

 	

 Removing topic-level <indexterm> elements from topic
 prologs:

 <topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <metadata>
 <keywords>
 <indexterm>feature A</indexterm>
 </keywords>
 </metadata>
 </prolog>

 	

 Removing inline <indexterm> elements from topic content:

 <p>This is about <indexterm>feature B</indexterm>feature B.</p>

 Oxygen provides a "Delete element" refactoring operation. However, it does precisely
 what
 it says—deletes the specified elements, leaving everything else in place:

 <topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <metadata>
 <keywords>

 </keywords>
 </metadata>
 </prolog>

 I decided to create an XSLT refactoring operation that does the following:

 	

 Deletes the specified elements

 	

 Deletes any containing (ancestor) elements that became empty as a result

 	

 Updates whitespace/newline formatting around deleted elements as needed

 	

 Serves as an easily customizable template for other element deletion uses

 Fortunately, as described in Custom Refactoring Operations, Oxygen allows
 us to package up customized XSLT refactoring operations in an easy-to-use way. For
 the
 XML descriptor file, put this content into a remove-index.xml
 file:

 <?xml version="1.0" encoding="UTF-8"?>
<refactoringOperationDescriptor
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="remove-index"
 name="Remove index from a DITA book">
 <description>Remove index terms and backmatter index from a DITA book.</description>
 <script type="XSLT" href="remove-index.xsl"/>
 <category>DITA</category>
</refactoringOperationDescriptor>

 For the XSLT file itself, put this content into a remove-index.xsl
 file:

 <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="2.0">

 <!-- elements to delete -->
 <xsl:variable name="elements-to-delete" select="('indexterm', 'indexlist')"/>

 <!-- delete up to (and including) these elements, if they become empty -->
 <xsl:variable name="delete-up-to" select="('prolog', 'backmatter')"/>

 <!-- baseline identity transform -->
 <xsl:template match="@*|node()">
 <xsl:copy>
 <xsl:apply-templates select="@*|node()"/>
 </xsl:copy>
 </xsl:template>

 <!-- remove elements-to-delete -->
 <xsl:template match="*[name() = $elements-to-delete]"/>

 <!-- remove whitespace/newlines before elements-to-delete -->
 <xsl:template match="text()
 [following-sibling::*[1]
 [name() = $elements-to-delete]]
 [matches(., '^\s*\n\s*$')]"/>

 <!-- remove elements that contain our to-be-deleted elements,
 but only if they become empty -->
 <xsl:template match="*[ancestor-or-self::*[name() = $delete-up-to]]
 [descendant::*[name() = $elements-to-delete]]">

 <!-- apply templates to this element's contents and see what we get -->
 <xsl:variable name="contents" as="node()*">
 <xsl:apply-templates select="node()"/>
 </xsl:variable>

 <!-- if children elements remain, copy this element (and its preceding whitespace/newlines)
 and put its contents inside -->
 <xsl:if test="$contents[self::*]">
 <xsl:copy select="preceding-sibling::node()[1][self::text()][matches(., '^\s*\n\s*$')]"/>
 <xsl:copy select=".">
 <xsl:sequence select="$contents"/>
 </xsl:copy>
 </xsl:if>
 </xsl:template>

 <!-- remove whitespace/newlines before elements-to-delete
 (we re-add whitespace/newlines above, if needed -->
 <xsl:template match="text()
 [following-sibling::*[1]
 [ancestor-or-self::*[name() = $delete-up-to]]
 [descendant::*[name() = $elements-to-delete]]]
 [matches(., '^\s*\n\s*$')]"/>

</xsl:stylesheet>

 At the beginning of the refactoring operation, two XSLT variables are defined:

 	

 elements-to-delete - the element names to delete, regardless of
 their contents

 	

 delete-up-to - the highest-level containing element names to
 delete, if they become empty

 The refactoring operation works as follows:

 	

 The elements-to-delete elements are always deleted.

 	

 Any whitespace/newline text() nodes directly preceding
 them are also deleted.

 	

 Any elements that (1) contain an elements-to-delete element as a
 descendant, (2) are contained by or are themselves a
 delete-up-to element, and (3) become empty due to the
 element deletion, are deleted.

 	

 To determine if a "containing" element becomes empty due to the deletion,
 <xsl:apply-templates> is called, then the
 results are checked to see if any elements remain. This is what allows
 the deletion to continue dynamically up through the containing
 elements.

 	

 To conditionally keep the whitespace/newline text() node
 directly preceding a "containing" element,

 	

 A standalone unconditional template always deletes the whitespace/newline
 text() node preceding a containing element, whether
 it will be kept or not.

 	

 Inside the template that conditionally keeps containing elements, that
 same preceding text() node is re-included if the
 containing element is kept.

 The following example shows a <prolog> element that disappears
 completely because it does not contain anything other than an
 <indexterm> element:

 	Before refactoring

 	After refactoring

 	

 <topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <metadata>
 <keywords>
 <indexterm>feature A</indexterm>
 </keywords>
 </metadata>
 </prolog>

 	

 <topic id="feature_A">
 <title>About Feature A</title>

 The following example shows a <prolog> element that is partially kept
 because it also contains a <resourceid> element:

 	Before refactoring

 	After refactoring

 	

 <topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <metadata>
 <keywords>
 <indexterm>feature A</indexterm>
 </keywords>
 </metadata>
 <resourceid id="feature_A"/>
 </prolog>

 	

 <topic id="feature_A">
 <title>About Feature A</title>
 <prolog>
 <resourceid id="feature_A"/>
 </prolog>

 This same refactoring code can be adapted to other use cases by editing the
 elements-to-delete and delete-up-to variables as
 needed.

 Resolving DITA Cross-References in Refactoring Operations

 We needed a way to resolve DITA <xref> and <link>
 elements to their target element in a refactoring operation. We also needed to determine
 whether the link was a local or peer-map reference. Fortunately, Oxygen v25.1 provided
 us with the solution!

 The Missing Piece - Resolving a @keyref

 For <xref> and <link> elements, we use a mix
 of @href and @keyref references in our content. In
 XSLT refactoring operations, we could resolve @href references to
 the target file (and optionally, an element in that file) by using the XPath
 document() function. However, we had no way of resolving
 @keyref references because a refactoring operation only
 processes the current file (it doesn't consider Oxygen's map context or the keys
 defined within it). In addition, writing such a resolver in XSLT that properly
 considers keyscopes would be enormously difficult.

 In the Oxygen v25.1 release, new API functions were introduced to provide
 information about @keyref references:

 	

 The getKeyRefInfo() function returns information about a
 reference's type (local, peer, unresolved, and so on).

 	

 The getKeyRefAbsoluteReference() function resolves a
 @keyref to its equivalent @href reference
 URL.

 Note:

 There were subsequent improvements to the API functions in Oxygen v25.1 build
 2023070306, so you should use that release or later for best results.

 Thanks to this new API, we could use a simple @href resolver written in
 XSLT for @keyref references too!

 Resolving Cross-References in Refactoring Operations

 The attached test case provides the following XSLT file that you can include in your
 own refactoring operations:

 frameworks/dita/refactoring/util-get-referenced-element.xsl

 This file defines a mode="get-referenced-element" template that,
 when applied to any element with an @href or
 @keyref attribute, returns the referenced element. If the
 reference cannot be resolved, the template returns an empty sequence.

 The template works as follows:

 	

 References with @scope="external" always
 return an empty sequence.

 	

 References with @format set to a value other than
 "dita" always return an empty sequence.

 	

 If the reference has a @keyref, it is converted to an
 @href value using
 getKeyRefAbsoluteReference().

 	

 The @href value is parsed into its components as follows:

 [file]#topic_id[/element_id]

 	

 The target document is obtained as follows:

 	

 If no file is specified, the in-memory document
 that contains the cross-reference element is used.

 	

 If a file is specified and that file contains the
 cross-reference element, the in-memory document that contains the
 cross-reference element is used.

 	

 Otherwise, the specified file document is loaded from disk using the
 XPath document() function.

 This heuristic approach ensures that in multiple-pass refactoring operations,
 the in-memory version of the content is preferred over the on-disk
 version.

 	

 The topic that matches the topic_id value is obtained from
 the target document.

 	

 If an element_id is specified, the element in the topic
 that matches the element_id value is obtained.

 Because non-topic @id values do not need to be unique, the
 code ensures that no subtopics within the matching topic are searched to
 avoid incorrect matches.

 To view the XSLT stylesheet without downloading the archive, click on the following
 link:

 util-get-referenced-element.xsl

 There are comments in the code to explain how it works.

 The @keyref API functions require that a map context be active in
 Oxygen. If no context is available (for example, no map is open in the
 DITA Maps Manager), there will be no key information
 available to resolve the reference.

 Example Test Case

 The following Oxygen project provides examples of how cross-reference resolutions
 can
 be used in refactoring operations and Schematron checks:

 resolving_refs_refactoring.zip

 Specifically, it provides the following:

 	

 An "Update Cross References" refactoring operation is provided that:

 	

 Sets (or updates) the @type attribute for
 <xref> and <link>
 elements.

[image: ../images/refactoring_setting_type_attributes.png]

 	

 Populates the target text for <xref> and
 <link> elements that reference topics in
 peer maps (i.e. cross-book links).

[image: ../images/refactoring_target_text.png]

 	

 Schematron checks are provided that:

 	

 Warn about <xref> and
 <link> elements that reference topics in
 peer maps (i.e. cross-book links) but do not contain any target
 text.

[image: ../images/schematron_warn_missing_target_text.png]

 This check also offers a "quick fix" that populates the target text
 for you.

 	

 Show the value of the getKeyRefInfo() and
 getKeyRefAbsoluteReference() API calls for any
 element with a @keyref attribute.

[image: ../images/showing_API_values.png]

 These informational checks are commented out by default. You can
 uncomment them in the following file:

 frameworks/dita/sch/checks.sch

 When target text is added to a peer map (cross-book) reference, an
 <?oxy-peertext?> processing instruction is added to
 indicate that the text was updated automatically. If you remove this processing
 instruction and customize the target text, your customized text will not be
 disturbed by future automatic updates.

 Inserting and Reformatting Content in Refactoring Operations

 In Oxygen, refactoring operations are a powerful way to provide content modification
 functionality to users. This blog post describes some challenges that can occur when
 adding, changing, or deleting content. It also provides solutions that you can use
 in
 your own refactoring operations.

 Re-indenting XML After Content Updates

 In XSLT, all document content is represented by a node (elements, attributes, text,
 comments, and so on). In fact, even the whitespace text surrounding indented
 elements are explicit text nodes in the document.

 Note:

 In the figures below:

 	

 Notable space characters are represented by the Unicode "U+2420: Symbol
 For Space" (␠) character.

 	

 Notable line-end characters are represented by the Unicode "U+240A:
 Symbol For Line Feed" (␊) character.

 When you delete an element node in a refactoring operation, any preceding or
 subsequent text nodes are left in place:

[image: ../images/deleting_element.svg]

 When you insert a new element node before or after an existing element node, no new
 indenting whitespace is added (unless the refactoring operation explicitly inserts
 it):

[image: ../images/inserting_element.svg]

 The test case below provides a mode="indent-stuff" template mode
 that looks for @indent attribute directives (they are removed as
 part of the reformatting process).

 In the following example, the indent-reformatting template is applied around a
 <p> deletion:

[image: ../images/deleting_element_reformatted.svg]

 In the following example, the indent-reformatting template is applied to
 <p> insertions:

[image: ../images/inserting_element_reformatted.svg]

 The @indent attribute contains a space-separated list that supports
 the following values:

 	

 self - Reformat indenting whitespace before the current
 element (and after, for the last child of a parent).

 	

 adjacent-siblings - Reformat indenting whitespace before the
 preceding and following sibling elements (and after, for the last child of a
 parent).

 	

 siblings - Reformat whitespace around all sibling
 elements in the same parent element.

 	

 children - Reformat whitespace around all child
 elements.

 	

 deep - Reformat whitespace around all child and descendant
 elements.

 The @indent attribute allows you to control the scope of content
 change so that the revision control change footprint can be controlled.

 The mode="indent-stuff" template works as follows:

 	

 Different files can have different indenting width conventions.

 	

 The template uses the most common indenting value (the statistical
 mode) in each file.

 	

 Elements inserted in a block context (i.e. <p>) should
 be indented, but elements in an inline context (i.e.
 <codeph>) should not.

 	

 Some elements (i.e. <indexterm>) should be
 treated as block or inline elements based on their context
 (such as when they are in <prolog> or
 <p>).

 	

 There might or might not be existing indenting whitespace around an element,
 and it might or might not be correct.

 	

 Indenting is added or repaired as needed.

 	

 The last child element of a parent element requires one less indent level
 before its parent's closing tag.

 To determine where indenting is appropriate, the stylesheet defines
 inner-tag-type and outer-tag-type XSLT3 maps
 that indicate the expected type of content at the inside and outside of each
 element's tags. Possible values are block (block elements),
 text (text content or inline elements), or an empty string
 (unknown or ambiguous content type). For example:

 	Element

 	outer-tag-type

 	inner-tag-type

 	body

 	block

 	block

 	p

 	block

 	text

 	ph

 	text

 	text

 	menucascade

 	text

 	block

 	indexterm

 	'' (empty string)

 	text

 	entry

 	block

 	'' (empty string)

 For elements with unknown or ambiguous content types at the tag boundaries, the
 stylesheet applies heuristics to guess the indentation needs.

 To view the XSLT stylesheet without downloading the test case, click on the following
 link:

 util-indent.xsl

 There are comments in the code to explain how it works.

 Considering Content Models During Content Insertion

 When inserting new content, the changes should not introduce any DITA content model
 (schema) violations. Some DITA content models require a specific element ordering.
 For example, the content model for <prolog> is:

 	<prolog> =

 	

 <author>*, <source>?,
 <publisher>?,
 <copyright>*,
 <critdates>?,
 <permissions>?,
 <metadata>*,
 <resourceid>*, (<data>
 | <data-about> | <foreign>
 | <sort-as> |
 <unknown>)*

 Commas in the content model indicate an ordering requirement. For example, a
 <resourceid> element must be inserted after its preceding
 elements and before its following elements.

 The test case below provides a mode="insert-stuff" template mode
 that inserts content at a specified element path inside the selected element.

 In the following example, the content-insertion template is applied to a
 <topic> element to insert a
 <resourceid> element in a <prolog>
 element:

[image: ../images/inserting_resourceid.svg]

 In the following example, the content-insertion template is applied to a
 <topic> template to insert an
 <indexterm> element using a multiple-level insertion
 path:

[image: ../images/inserting_indexterm.svg]

 The mode="insert-stuff" template works as follows:

 	

 The path parameter can be a sequence of element name
 strings, a path string value using slash ("/") separators,
 or a mix of both.

 	

 An empty string or sequence value inserts the content directly into
 the applied element.

 	

 New elements are inserted into existing elements using content model
 information.

 	

 The template creates or reuses intermediate element levels as needed,
 considering content models along the way.

 	

 New elements created by a @path specification have a default
 @indent value of self.

 You can override the default @indent value by specifying the
 indent parameter with the
 mode="insert-stuff" template. For example:

 	

 Setting indent to "self
 adjacent-siblings" reformats content more aggressively
 around newly created intermediate elements.

 	

 Setting indent to an empty string value disables
 reformatting for newly created elements.

 	

 The insertion content itself is not indented unless it has explicitly defined
 @indent attributes.

 	

 Only simple ordered-list content model modeling is supported.

 To view the XSLT stylesheet without downloading the test case, click on the following
 link:

 util-insert.xsl

 There are comments in the code to explain how it works.

 Example Test Case

 The following Oxygen project provides the moded templates described earlier, along
 with an example refactoring operation that demonstrates their use:

 refactoring_inserting_reformatting.zip

 Specifically, it provides the following:

 	

 frameworks/dita/refactoring/util-indent.xsl

 This stylesheet file defines the mode="indent-stuff"
 template.

 The outer-tag-type and inner-tag-type XSLT3
 maps are defined at the top of the file. You can update or add to these as
 needed.

 	

 frameworks/dita/refactoring/util-insert.xsl

 This stylesheet file defines the mode="insert-stuff"
 template.

 The content-models map is defined at the top of the file.
 Only <prolog>-related content models are defined in
 this test case. You can add to these as needed.

 	

 frameworks/dita/refactoring/insert-by-content-model.xml

 frameworks/dita/refactoring/insert-by-content-model.xsl

 This Oxygen refactoring operation allows you to interactively experiment with
 content insertion and reformatting. It includes and uses both of the
 stylesheets above.

 To try out the example refactoring operation:

 	

 Open the OPENME2.ditamap file in the DITA
 Maps Manager.

 	

 Open "My Topic" (topic.dita) in the Oxygen editor.

 	

 Right-click in the topic editing window, then choose Refactoring > Content insertion > Insert element by content model.

 	

 For the configuration parameters, enter the following:

[image: ../images/testcase_refactoring_parameters.png]

 	

 When you preview the refactoring operation, the results should be as
 follows:

[image: ../images/testcase_refactoring_preview.png]

 Surveys

 Small Problems with the DITA Standard

 Don't get me wrong, I think that DITA is a great standard for writing technical
 documentation, it has lots of reuse possibilities and linking potential, and in general,
 it's
 well thought out and comprehensive.

 Over the years, many of our Oxygen XML Editor clients (or me, personally) have
 encountered various limitations/quirks in the DITA standard and I will share them
 below. These complaints are not related at all to the publishing part and I think
 that some of
 them will probably be resolved as the DITA standard evolves from one version to
 another. Also, many of these issues could not be effectively fixed since the DITA
 standard has strived (and succeeded) to be backward compatible and thus, the issues
 remain
 from version to version. So here we go:

 	When I create a DITA specialization, to add a new attribute according to the
 specification I need to add that attribute to all DITA elements. I think the main
 idea was that the new attribute is a profiling attribute so it makes sense to be added
 to
 all elements, but sometimes you need to funnel this behavior and make the attribute
 available only on a certain element and still consider the specialization as a valid
 DITA specialization.

 	The existing xml:lang attribute cannot be used to profile and filter out content.
 In the past, we had users somehow mixing languages in the same DITA Map and expecting
 to
 create output for one language or the other by filtering based on the xml:lang
 attribute.

 	You cannot easily profile/filter out an entire column from a CALS table. For
 example, you cannot add a profiling attribute directly to the DITA colspec element
 to remove entire table columns when publishing. So the alternative is to use a DITA
 simple table and define the profiling attribute on each of the cells in the column
 or to
 perform some kind of output customization based on a magic outputclass attribute
 set on a certain element in the table.

 	There are too many constraints imposed when writing DITA specializations.
 Robert Anderson, the DITA OT project manager and OASIS member
 involved in defining the DITA standard, had two interesting blog posts on this:

 	http://metadita.org/toolkit/ditasplainer.html

 	http://metadita.org/toolkit/nonononodomains.html

 	With most of the material being published for web and with the need to dynamically
 include media resources (video, audio) in the published HTML content, it's a pity
 that the DITA standard does not yet have specialized <audio> and
 <video> elements. Again, we need to rely on the magic outputclass
 attribute to give semantic to the generic DITA
 <object> element.

 	Sometimes there are two or more ways of doing something. For example, choosing between
 using a CALS table or a simple table or choosing between using conkeyref,
 keyref, or conref to reuse small pieces of text. Why even have the
 <simpletable> element in the DITA standard at all, since a CALS
 table without cells spanning is simple enough? The LightWeight DITA Project is an
 alternative to DITA and it tries to simplify the standard and eliminate such
 problems: http://docs.oasis-open.org/dita/LwDITA/v1.0/LwDITA-v1.0.html.

 	DITA elements that have conrefs or conkeyrefs need to also have the
 required content specified in them. So I cannot simply do
 this:
 <table conref="path/to/target.dita#topicID/elementID"/>
Instead,
 I need to do
 this:
 <table conref="path/to/target.dita#topicID/elementID">
 <tgroup cols="1">
 <tbody>
 <row>
 <entry/>
 </row>
 </tbody>
 </tgroup>
</table>
and
 have all the required table elements and tgroup elements (plus required attributes)
 filled
 out even if the expanded conref will replace the entire original element.

 	You cannot reference directly to a subtopic element using a key. If the standard would
 allow a DITA Map to reference directly to a subtopic element like
 this:
 <keydef href="topics/reusableComponents.dita#topicID/tableID" keys="reused_table"/>
you
 could reuse the table without needing to specify the ID to the reused element on each
 conkeyref:
 <table conkeyref="reused_table"/>

 	Some DITA elements (eg: , <entry>, <section>)
 have a very relaxed content model in the specification allowing both text and block
 elements, in any order. So when using visual editing tools, this leads technical writers
 to create DITA content that looks like
 this:

 Preview:
 <p>Here are some of the preview</p>

as
 the visual editing tool cannot, by default, impose an editing constraint if the standard
 does not. Usually, for such cases additional Schematron checks can be handy.

 	The DITA content is not automatically profiled based on the new DITA 1.3
 deliveryTarget attribute. So setting deliveryTarget="pdf" on a DITA
 element will not automatically filter it out of the HTML based outputs, the
 attribute is treated just like another profiling attribute, and it can be filtered
 out
 from the DITAVAL file.

 This concludes my complaint list. Anything else you encountered in the DITA
 standard that bothers you?

 DITA Linking Usage Survey

 A few weeks ago I published a survey that was intended to be an overview about DITA
 Linking
 habits. A big thank you to everyone who participated.

 Here are some of my thoughts in regards to the results:

 	Most projects (including ours) seems to approach linking with a mixture between DITA
 1.1
 hrefs and DITA 1.2 keyrefs. In my opinion, this is caused by a variety of factors,
 of
 which the most important could be:

 	Technical writers who are not comfortable using indirect references (keyrefs)

 	The project was started using hrefs and not all links have been converted to
 keyrefs

 	Almost everybody using related links uses a relationship table to manage them. And
 that's good.

 	There are projects where related links, chunking and collection-type are not used
 at
 all. I think this is not because the projects are not complex, but because the main
 output
 delivery format for those projects is PDF. In a DITA Reuse survey I opened last
 year, there was a clear indication that PDF was still the most used output format.

 Although harder to quantify, I usually like answers to open questions because you
 get a
 better idea about the difficulties of linking in DITA:

 	The large set of DITA linking possibilities make the standard harder to use (too many
 options, harder for writers to understand and use keyrefs or relationship tables).
 There
 seems to be a need to have a best practice involving linking and DITA.

 	Various writers have various writing styles, leading to inconsistent projects.

 	Problems with the publishing part, even when the right DITA content is used for links
 (for example abbreviated-form). The publishing engine might have issues that break
 the
 link in the final output.

 	Problems with link management, with having a clear idea of outbound and inbound links
 and their target. Problems with broken links.

 	The tools used for editing DITA sometimes hide the complexity and even the type of
 link
 that gets created. Also, the tools should help make it easier for the writer to find
 the
 target content to link to.

 DITA Inheritance Hierarchy

 The DITA standard is based on the concept of inheritance that enables extending or
 restricting the vocabulary while allowing the XML content to still be regarded as
 valid DITA.
 Even in the DITA standard, there are various elements that are specializations of
 others (for
 example "b" is a specialization of "ph"). The XSLT stylesheets that are used for publishing
 match all DITA elements by the value of their @class attribute, so knowing how elements
 may
 extend each other may be useful when customizing the DITA XSLT stylesheets.

 A DITA inheritance hierarchy list for the base DITA Topic specification is presented
 below:

 	topic/copyryear

 	topic/foreign

 	mathml-d/mathml

 	svg-d/svg-container

 	topic/author

 	topic/example

 	topic/unknown

 	topic/titlealts

 	topic/linktext

 	topic/category

 	topic/data

 	relmgmt-d/change-request-reference

 	relmgmt-d/change-person

 	relmgmt-d/change-request-id

 	relmgmt-d/change-request-system

 	relmgmt-d/change-completed

 	relmgmt-d/change-started

 	ut-d/sort-as

 	relmgmt-d/change-item

 	relmgmt-d/change-organization

 	relmgmt-d/change-summary

 	concept/data

 	glossentry/glossPartOfSpeech

 	glossentry/glossProperty

 	glossentry/glossStatus

 	relmgmt-d/change-revisionid

 	topic/longdescref

 	topic/audience

 	topic/abstract

 	concept/abstract

 	glossentry/glossdef

 	topic/related-links

 	topic/body

 	task/taskbody

 	concept/conbody

 	glossentry/glossBody

 	troubleshooting/troublebody

 	reference/refbody

 	topic/ph

 	hi-d/overline

 	hi-d/line-through

 	hi-d/sub

 	pr-d/sep

 	equation-d/equation-inline

 	pr-d/repsep

 	equation-d/equation-number

 	hi-d/tt

 	task/cmd

 	pr-d/synph

 	sw-d/userinput

 	ut-d/coords

 	pr-d/oper

 	hi-d/sup

 	pr-d/var

 	sw-d/msgph

 	pr-d/codeph

 	ui-d/uicontrol

 	hi-d/i

 	hi-d/u

 	sw-d/filepath

 	sw-d/systemoutput

 	pr-d/delim

 	hi-d/b

 	ui-d/menucascade

 	topic/object

 	topic/fig

 	ut-d/imagemap

 	pr-d/syntaxdiagram

 	equation-d/equation-figure

 	topic/featnum

 	topic/lines

 	topic/brand

 	topic/state

 	topic/source

 	topic/link

 	topic/vrm

 	topic/sli

 	topic/navtitle

 	topic/figgroup

 	pr-d/synblk

 	pr-d/fragment

 	ut-d/area

 	pr-d/groupcomp

 	pr-d/groupseq

 	pr-d/groupchoice

 	topic/note

 	hazard-d/hazardstatement

 	concept/note

 	glossentry/glossScopeNote

 	glossentry/glossUsage

 	topic/ol

 	task/substeps

 	task/steps

 	topic/stentry

 	task/choption

 	reference/propvalue

 	reference/propvaluehd

 	reference/propdeschd

 	reference/propdesc

 	reference/proptype

 	reference/proptypehd

 	task/choptionhd

 	task/chdesc

 	task/chdeschd

 	topic/dlentry

 	pr-d/plentry

 	topic/vrmlist

 	topic/entry

 	topic/fn

 	pr-d/synnote

 	topic/xref

 	mathml-d/mathmlref

 	svg-d/svgref

 	concept/xref

 	glossentry/glossAlternateFor

 	pr-d/synnoteref

 	pr-d/fragref

 	pr-d/coderef

 	topic/component

 	topic/series

 	topic/bodydiv

 	reference/refbodydiv

 	troubleshooting/troubleSolution

 	concept/conbodydiv

 	topic/data-about

 	topic/tgroup

 	topic/keywords

 	topic/boolean

 	topic/critdates

 	topic/strow

 	task/chrow

 	reference/property

 	topic/simpletable

 	reference/properties

 	task/choicetable

 	topic/linklist

 	topic/revised

 	topic/table

 	topic/dt

 	pr-d/pt

 	topic/image

 	hazard-d/hazardsymbol

 	concept/image

 	glossentry/glossSymbol

 	topic/ul

 	hazard-d/messagepanel

 	task/choices

 	task/steps-unordered

 	topic/p

 	concept/p

 	glossentry/glossSurfaceForm

 	troubleshooting/responsibleParty

 	topic/q

 	topic/linkinfo

 	topic/dd

 	pr-d/pd

 	topic/lq

 	topic/prodinfo

 	topic/dl

 	pr-d/parml

 	topic/prolog

 	topic/indextermref

 	topic/copyright

 	topic/div

 	equation-d/equation-block

 	topic/sthead

 	task/chhead

 	reference/prophead

 	topic/tbody

 	topic/searchtitle

 	topic/colspec

 	topic/created

 	topic/tm

 	topic/text

 	topic/cite

 	topic/li

 	hazard-d/howtoavoid

 	task/step

 	task/substep

 	hazard-d/consequence

 	hazard-d/typeofhazard

 	task/choice

 	task/stepsection

 	topic/permissions

 	topic/no-topic-nesting

 	topic/dlhead

 	topic/prodname

 	topic/index-base

 	indexing-d/index-sort-as

 	indexing-d/index-see

 	indexing-d/index-see-also

 	topic/indexterm

 	topic/copyrholder

 	topic/longquoteref

 	topic/required-cleanup

 	topic/ddhd

 	topic/sl

 	topic/draft-comment

 	topic/section

 	task/postreq

 	task/result

 	troubleshooting/remedy

 	task/tasktroubleshooting

 	concept/section

 	glossentry/glossAlt

 	task/context

 	troubleshooting/cause

 	task/steps-informal

 	reference/refsyn

 	task/prereq

 	troubleshooting/condition

 	topic/pre

 	sw-d/msgblock

 	pr-d/codeblock

 	ui-d/screen

 	topic/topic

 	troubleshooting/troubleshooting

 	concept/concept

 	glossgroup/glossgroup

 	glossentry/glossentry

 	reference/reference

 	task/task

 	topic/platform

 	topic/alt

 	topic/keyword

 	ui-d/shortcut

 	markup-d/markupname

 	xml-d/parameterentity

 	xml-d/xmlatt

 	xml-d/numcharref

 	xml-d/xmlpi

 	xml-d/textentity

 	xml-d/xmlnsname

 	xml-d/xmlelement

 	pr-d/parmname

 	pr-d/option

 	sw-d/cmdname

 	ui-d/wintitle

 	ut-d/shape

 	sw-d/varname

 	pr-d/apiname

 	pr-d/kwd

 	sw-d/msgnum

 	topic/thead

 	topic/publisher

 	topic/desc

 	topic/term

 	abbrev-d/abbreviated-form

 	topic/title

 	concept/title

 	glossentry/glossShortForm

 	glossentry/glossAbbreviation

 	glossentry/glossSynonym

 	glossentry/glossterm

 	glossentry/glossAcronym

 	topic/itemgroup

 	task/steptroubleshooting

 	task/tutorialinfo

 	task/info

 	task/stepxmp

 	task/stepresult

 	topic/row

 	topic/linkpool

 	topic/param

 	topic/shortdesc

 	topic/resourceid

 	topic/dthd

 	topic/metadata

 	relmgmt-d/change-historylist

 	topic/othermeta

 	topic/prognum

 	topic/sectiondiv

 A DITA inheritance hierarchy list for the base DITA Map specification is presented
 below:

 	abbrev-d/abbreviated-form

 	delay-d/anchorkey

 	delay-d/exportanchors

 	ditavalref-d/ditavalmeta

 	ditavalref-d/dvrResourceSuffix

 	hazard-d/hazardstatement

 	hazard-d/hazardsymbol

 	hazard-d/messagepanel

 	hazard-d/typeofhazard

 	indexing-d/index-sort-as

 	map/topicmeta

 	map/topicref

 	ditavalref-d/ditavalref

 	glossref-d/glossref

 	mapgroup-d/anchorref

 	mapgroup-d/keydef

 	mapgroup-d/mapref

 	mapgroup-d/topichead

 	mapgroup-d/topicset

 	mapgroup-d/topicsetref

 	mapgroup-d/topicgroup

 	pr-d/parml

 	pr-d/pd

 	pr-d/plentry

 	pr-d/pt

 	pr-d/synblk

 	pr-d/synnote

 	pr-d/synnoteref

 	relmgmt-d/change-historylist

 	sw-d/msgblock

 	sw-d/userinput

 	topic/data

 	ditavalref-d/dvrKeyscopePrefix

 	ditavalref-d/dvrKeyscopeSuffix

 	ditavalref-d/dvrResourcePrefix

 	relmgmt-d/change-completed

 	relmgmt-d/change-item

 	relmgmt-d/change-organization

 	relmgmt-d/change-person

 	relmgmt-d/change-request-id

 	relmgmt-d/change-request-reference

 	relmgmt-d/change-request-system

 	relmgmt-d/change-revisionid

 	relmgmt-d/change-started

 	relmgmt-d/change-summary

 	ut-d/sort-as

 	topic/dd

 	topic/dl

 	topic/dlentry

 	topic/dt

 	topic/fig

 	pr-d/syntaxdiagram

 	topic/figgroup

 	pr-d/fragment

 	pr-d/groupchoice

 	pr-d/groupcomp

 	pr-d/groupseq

 	ut-d/area

 	topic/fn

 	topic/image

 	topic/index-base

 	indexing-d/index-see

 	indexing-d/index-see-also

 	topic/keyword

 	delay-d/anchorid

 	markup-d/markupname

 	xml-d/numcharref

 	xml-d/parameterentity

 	xml-d/textentity

 	xml-d/xmlatt

 	xml-d/xmlnsname

 	xml-d/xmlpi

 	pr-d/apiname

 	pr-d/kwd

 	pr-d/option

 	pr-d/parmname

 	sw-d/cmdname

 	sw-d/msgnum

 	sw-d/varname

 	ui-d/shortcut

 	ui-d/wintitle

 	ut-d/shape

 	xml-d/xmlelement

 	topic/keywords

 	topic/li

 	hazard-d/consequence

 	hazard-d/howtoavoid

 	topic/metadata

 	topic/note

 	topic/ph

 	hi-d/b

 	hi-d/i

 	hi-d/line-through

 	hi-d/overline

 	hi-d/sub

 	hi-d/sup

 	hi-d/tt

 	hi-d/u

 	pr-d/codeph

 	pr-d/delim

 	pr-d/oper

 	pr-d/repsep

 	pr-d/sep

 	pr-d/synph

 	pr-d/var

 	sw-d/filepath

 	sw-d/msgph

 	sw-d/systemoutput

 	ui-d/menucascade

 	ui-d/uicontrol

 	ut-d/coords

 	topic/pre

 	pr-d/codeblock

 	ui-d/screen

 	topic/term

 	topic/ul

 	topic/xref

 	pr-d/coderef

 	pr-d/fragref

 	ut-d/imagemap

 DITA Usage Survey

 A week or two ago I opened a survey about various ways in which people are using DITA.
 The
 survey was taken by more than 50 distinct DITA users and I think it indicated quite
 clearly
 some trends in the industry. As I said from the beginning,

 I will try below to sum up some of the results:

 GIT is on a roll

 GIT overcomes Subversion to be the most popular open source solution for
 version control used in DITA projects. Although most users who responded seem to use
 open source solutions for version control, there is a solid portion of them using
 commercial
 CMSs probably specialized in DITA content. I suspect that people with small to
 medium projects prefer open source solutions because they are more affordable for
 their
 small group of writers.

 PDF is still the most popular output format

 Most of the participants identified PDF as being their primary output format. Most
 of them output both to PDF and XHTML but the choice of PDF as the
 primary output format looks very clear.

 Indirect addressing is becoming the main way of reusing content

 Plain content references are still used more than content key references but key references
 are strongly used as well so it seems that indirect ways of addressing content win
 this
 game.

 DITA 1.3 features

 Besides the use of key scopes and branch filtering (which comes as no surprise) it
 would
 see that the troubleshooting topic and use of SVG embedded directly inside
 DITA content come as strong needs that DITA 1.3 fulfills.

 Popular image formats

 The fact that PNG is the most popular image format comes as no surprise. But
 SVG coming in as a close second identifies an increasing trend of using vectorial
 images in technical documentation. Besides the benefit of being vectorial and not
 losing
 information when scaled, SVG allows you the unique capability of translating various
 parts of the image.

 Major DITA frustrations

 It would seem there are two major DITA frustrations:

 	PDF Customization difficulties. This in my opinion wins the cake in this category.
 Customizations for the standard PDF output are hard, they required knowledge of XSLT,
 XSL-FO and of the PDF plugin architecture. But alternatives do exist:Possibilities to obtain PDF from DITA

 	"DITA is perceived as too complex for casual users." This quote says it all, the entry
 level is high. There are also complains about linking, filtering and reuse. All these
 come from the DITA flexibility and the fact that each new version adds new elements
 and
 ways of working with content. And although DITA can be specialized and reduced as
 a
 vocabulary, I suspect not many people are doing that.

 That's all I wanted to cover in this post, so go ahead, enjoy the survey results and
 any
 comments are as usual welcomed.

 Creating a Knowledge Base for the Google Dialogflow Chatbot using DITA XML
 content

 A Chatbot is a computer program that simulates human conversation
 through voice commands or text chats or both. Chatbot (short for chatterbot), is an
 artificial intelligence (AI) feature that can be embedded and used through any major
 messaging application. Chatbots helps add convenience for customers, they are
 automated programs that interact with customers like a human would, and cost little
 to
 nothing to engage with.

 Suppose you have a simple DITA topic that contains pairs of questions and answers
 placed
 as rows in a table:

 <?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="frequently_asked_questions">
 <title>Frequently Asked Questions</title>
 <body>
 <p>
 <table frame="all" rowsep="1" colsep="1" id="table_bkf_4dl_vsb">
 <tgroup cols="2">
 <colspec colname="c1" colnum="1" colwidth="1*"/>
 <colspec colname="c2" colnum="2" colwidth="1*"/>
 <tbody>
 <row>
 <entry>
 <p>What is Oxygen XML Editor?</p>
 <p>What is Oxygen XML?</p>
 </entry>
 <entry>
 <p>Oxygen XML Editor is a great tool.</p>
 </entry>
 </row>
 <row>
 <entry>How do I learn DITA?</entry>
 <entry>You can read the "Oxygen" user's guide, and the Oxygen XML Blog.</entry>
 </row>
 </tbody>
 </tgroup>
 </table>
 </p>
 </body>
</topic>

 We can use the following XSLT stylesheet to extract the training data as a CSV file
 from
 the XML content:

 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs" version="2.0" xmlns:oxy="abc">
 <xsl:output method="text"/>
 <xsl:template match="/">
 <xsl:text>Question,Answer
</xsl:text>
 <xsl:for-each select="//tbody/row">
 <xsl:for-each select="entry[1]">
 <xsl:choose>
 <xsl:when test="p">
 <xsl:for-each select="p">
 <xsl:value-of select="oxy:escapeForCSV(normalize-space(.))"/>,<xsl:value-of
 select="oxy:escapeForCSV(normalize-space(string-join(../../entry[2]//text(), '')))"/><xsl:text>
</xsl:text>
 </xsl:for-each>
 </xsl:when>
 <xsl:otherwise>
 <xsl:value-of select="oxy:escapeForCSV(normalize-space(.))"/>,<xsl:value-of
 select="oxy:escapeForCSV(normalize-space(string-join(../entry[2]//text(), '')))"/><xsl:text>
</xsl:text>
 </xsl:otherwise>
 </xsl:choose>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
 <xsl:function name="oxy:escapeForCSV">
 <xsl:param name="value"/>
 <xsl:value-of select="replace(replace($value, '"', '""'), ',', '","')"/>
 </xsl:function>
</xsl:stylesheet>

 Create a transformation scenario using these 2 files. Save the output to a CSV file,
 as
 in the picture below:

 [image: ../images/chatbot-save-result-as-csv.png]

 After applying the transformation, the following CSV file should
 appear:
 What is Oxygen XML Editor?,Oxygen XML Editor is a great tool.
What is Oxygen XML?,Oxygen XML Editor is a great tool.
How do I learn DITA?,You can read the ""Oxygen"" user's guide"," and the Oxygen XML Blog.

 Notice:

 The structure of the CSV file contains a table with 2 columns, where the first column
 represents the question and the second column the answer, separated by a comma. In
 general, a line is in the form: "Question, Answer". One limitation is that each
 question can have only one answer. For the same answer to be suitable for several
 questions, you can copy it in the columns corresponding to the questions.

 Next, follow these steps to use the data from the CSV file in the Google
 Dialogflow chatbot:

 	Create an account on https://dialogflow.cloud.google.com/.

 	Create a new agent and complete the required fields:
 [image: ../images/chatbot-create-agent.png]

 	In Settings, enable BETA FEATURES.
 [image: ../images/chatbot-enable-beta.png]

 	Go to Knowledge > CREATE KNOWLEDGE BASE, enter a name for this knowledge base, and click the SAVE
 button.
 [image: ../images/chatbot-create-knowledge.png]

 	Use the CSV document for training. For this: Press Create the first
 one and complete the fields. Select the Update file
 from your computer option and select the desired file. Click the
 CREATE button.
 [image: ../images/chatbot-add-csv-file.png]

 The document will be registered in the knowledge
 base, as in the image below:

 [image: ../images/chatbot-knowledge-file-after-adding.png]

 	

 Convert questions and answers into intents.

 Click the View link from the image above. Check all
 questions that need to be converted to intents. Click the CONVERT
 TO INTENTS button.

 [image: ../images/chatbot-convert-to-intents.png]

 Now, when you click on Intents, the converted questions should
 appear:

 [image: ../images/chatbot-intents.png]

 	

 Do a simulation. Click Integration > Web demo, and if the demo feature is disabled, enable it.

 [image: ../images/chatbot-chat-demo.png]

 	Integrate the Chatbot in your HTML Content. Go to the
 Dialogflow
 Integrations page, click the Web
 Demo integration and you will get an
 <iframe> HTML element which can be pasted in your
 HTML page. Using a WebHelp customization you can also
 integrate the Chatbot in the footer for each generated HTML page.

 This was a basic way to show how a chatbot can be trained with intents and answers
 by
 using a DITA topic to produce a comma-separated value file.

 Using ChatGPT in a DITA XML Project

 	

 		
 The ChatGPT
 				OpenAI bot has the potential to help with various technical documentation
 			tasks (advice about the standard, small conversions, content generation, writing
 style,
 			and readability analysis).

 		
 Below, you can see a list of prompts that I gave the bot along with the answers. The
 prompts to
 			the chatbot are presented as codeblocks.

 		

 Advice About DITA XML Standard Use

 			
 			

 				

 					
 	
 						
 Ask about the type of DITA links to use in a
 							topic.
 Should I use cross references or related links in my DITA XML topic?

 						
 [image: ../images/chatgpt-xrefs-links.png]

 					

 					
 	
 						
 Ask information about a specific DITA XML element.

 						

 							
 Can I use the DITA XML uicontrol element for company names?

 						

 						
 [image: ../images/chatgpt-uicontrol.png]

 					

 				

 			

 		

 		

 Generate New Content

 			
 			

 				

 					
 	
 						
 Instruct ChatGPT to generate DITA content about a very common task.

 						

 							
 Write a small DITA XML task about installing a software application on Windows.

 						

 						
 [image: ../images/chatgpt-install.png]

 					

 					
 	
 						
 Generate a list of index terms from existing DITA XML content.

 						

 							
 Create a DITA XML prolog element containing 5-6 index term elements related to the DITA XML topic below:
....

 						

 						
 [image: ../images/chatgpt-indexterms.png]

 					

 				

 			

 		

 		

 Simple Conversions

 			
 			

 				

 					
 	
 						
 Convert Markdown content to DITA XML
 							topic.
 Convert this Markdown content to a DITA XML topic:

Getting Started

List of steps:

- Install application
- Login
- Perform task

 						
 [image: ../images/chatgpt-convert-md.png]

 					

 					
 	
 						
 Convert CSV content to DITA XML table.

 						

 							
 Convert this CSV content containing headers to a DITA XML table element:

Common name,Scientific name,Location,Temperament,Diet,Water,Size,Region of the Aquarium,Breeding
Compressiceps,Haplochromis compressiceps,Lake Tanganyika,Territorial,Omnivore,"PH 7.0 - 8.0, Temp. 73 - 77 F",5 inches,Bottom,Hard
Frontosa,Cyphotilapia frontosus,Lake Tanganyika,Very peaceful,Omnivore,"PH 7.8 - 8.5, Temp 75F - 82F",14 inches,Middle-Bottom,Medium

 						

 						
 [image: ../images/chatgpt-convert-csv.png]

 					

 				

 			

 		

 		

 Writing Style

 			
 			

 				
 	
 					
 Ask what terminology to use in certain cases.

 					

 						
 Should I use for technical documentation the phrase "click a button" or "press a button"?

 					

 					
 [image: ../images/chatgpt-terminology.png]

 				

 				
 	
 					
 Re-phrase documentation provided by engineers using the Microsoft Style Guide style
 and also
 						change the point of view from first-person to
 						third-person.
 Re-phrase the following content to adhere to the Microsoft Style Guide, third person:

The action Show only keys with closest relative key scope from DITA Reusable Components / Keys tab was also added to Media tab Settings drop down menu
The states of the two actions are synchronized. If you check it in Keys tab will automatically get checked in Media tab

 					
 [image: ../images/chatgpt-rephrase-ms-styleguide.png]

 				

 				
 	
 					
 Translate some notes from the engineer's native language (in this case, Romanian with
 a mix
 						of English words) to English, re-phrase using the Microsoft Style Guide
 						style, and also change the point of view from first-person to
 						third-person.
 Translate to English, rephrase to adhere to the Microsoft Style Guide, third person:

In tabul Media, in meniul Settings a aparut actiunea Show only keys with closest relative key scope
Cand o bifam trebuie sa ramana in view doar cheile relative (cheile cu forma cea mai scurta).

 					
 [image: ../images/chatgpt-translate-rephrase.png]

 				

 				
 	Re-write an entire DITA XML topic to increase its
 						readability.
 Re-write the following DITA XML topic preserving all its original XML elements to increase its readability:
<topic id="dita_oriented_tips_and_tricks">
	<title>DITA Oriented Tips And Tricks</title>
	<prolog>
		<author>Radu Coravu</author>
	</prolog>
	<body>
		<p><ph keyref="oxygen"/> has about 18 years of development under its wings. During these
			years, we added lots of functionality and many of our users usually do not know more than 20-30%
			of Oxygen's features. So this presentation is intended for technical writers using Oxygen to
			write DITA content and who may want to find out more about their tool.</p>
		<section id="section_gld_tbs_gfb">
			<title>Add-ons</title>
			<p>There are lots of free add-ons provided by the Oxygen team that can be installed in an
				<xref
					href="https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories"
					format="html" scope="external">Oxygen standalone version</xref>. I will enumerate some of
				the most interesting one:</p>
			<ul id="ul_xbw_ccs_gfb">
				<xref href="https://github.com/oxygenxml/oxygen-git-plugin" format="html"
					scope="external">Git add-on</xref>. This plugin adds a side view allowing you to do some
					common Git operations like pull, commit, push (mostly 90% of what a regular Git user would
					do).
				<xref href="https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html"
					format="html" scope="external">Content Fusion Connector add-on</xref>. Collaborate with
					your peers by sending them links that allow them to give you feedback on your work using a
					web browser without the need to pre-install anything on their side.
			
		</section>
	</body>
</topic>

 Result:
 <topic id="dita_oriented_tips_and_tricks">
	<title>DITA Oriented Tips And Tricks</title>
	<prolog>
		<author>Radu Coravu</author>
	</prolog>
	<body>
		<p><ph keyref="oxygen"/> has been under development for about 18 years. During this time, we
			have added a lot of functionality, but many of our users are not aware of more than
			20-30% of Oxygen's features. This presentation is intended for technical writers who use
			Oxygen to write DITA content and want to learn more about the tool.</p>
		<section id="section_gld_tbs_gfb">
			<title>Add-ons</title>
			<p>Oxygen provides a range of free add-ons that can be installed in the <xref
					href="https://github.com/search?q=topic%3Aadd-on+org%3Aoxygenxml&type=Repositories"
					format="html" scope="external">Oxygen standalone version</xref>. Here are some
				of the most interesting ones:</p>

			<ul id="ul_xbw_ccs_gfb">
				<xref href="https://github.com/oxygenxml/oxygen-git-plugin" format="html"
						scope="external">Git add-on</xref>: This plugin adds a side view that allows
					you to perform common Git operations like pull, commit, and push (similar to
					what a regular Git user would do).
				<xref
						href="https://www.oxygenxml.com/doc/ug-editor/topics/content-fusion-addon.html"
						format="html" scope="external">Content Fusion Connector add-on</xref>:
					Collaborate with your peers by sending them links that allow them to give you
					feedback on your work using a web browser, without the need for them to
					pre-install anything on their side.
			
		</section>
	</body>
</topic>

 Remarks: If the prompt insists that all XML
 						elements should be preserved, the re-write does few things, but if the
 						prompt does not insist that all XML elements should be preserved, the inline
 						elements and links are removed.

 			

 		

 		

 Statistics
Create readability analysis for a
 			DITA XML topic.

 				
 Create a readability analysis for the following DITA XML topic:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">
<topic id="topic_whr_nly_c5">
 <title>Sharing Application Settings</title><prolog><author>Radu Coravu</author></prolog>
 <body>
 <p>There are various ways in the Oxygen standalone version through which a team of writers
.........

 			

 [image: ../images/chatgpt-readability-analysis.png]

 		

 Custom Validation (Schematron-based)

 			
 			

 				
 	
 					
 Create an ISO Schematron validation check that counts
 						words.
 Create an ISO Schematron schema which reports if a DITA short description element has more than 20 words.

 					
 [image: ../images/chatgpt-sch-count-words.png]

 					
 Remark: The namespace declaration and usage is wrong (DITA elements are in no namespace).
 						The assert test is correct.

 				

 				
 	
 					
 Create an ISO Schematron validation check from a
 						description.
 Create an ISO Schematron validation rule which reports an error if a DITA XML image element does not contain a scale attribute

 					
 [image: ../images/chatgpt-sch-image-scale.png]

 					
 Remark: The namespace declaration and usage is wrong (DITA elements are in no namespace).
 						The assert test is correct.

 				

 			

 		

 	

 Oxygen AI Positron Assistant Add-on

 We are proud to introduce our new Oxygen AI Positron Assistant
 add-on, which provides support for helping technical documentation writers generate
 and
 re-write content by using the Oxygen AI Positron service.

 The Oxygen Positron Service uses the OpenAI ChatGPT
 model GPT-3.5 to provide document generation, change suggestions, and
 translation capabilities. A setting to switch to using the GPT-4 model is
 also provided.

 More details about installation and all the AI Positron features can be found in the
 Oxygen User's Manual.

 Overview

 In a simplified form, technical documentation is often done in two
 stages: analysis and implementation. In the analysis stage, technical writers could
 use
 various resources such as web searches, ChatGPT, or discussions with colleagues or
 engineers
 to further understand the subject that needs to be documented. In the second stage,
 technical writers would use tools such as Oxygen to write the actual content.

 The Oxygen AI Positron Assistant add-on provides
 various ways to use ChatGPT to help writers while editing or
 reviewing the technical documentation. For example, it can be used to receive hints
 about
 what to write next, improve the readability of content, or re-structure the content
 in
 various ways.

 Note: Content received from the OpenAI ChatGPT
 model may be inaccurate or contain misleading information, so it needs to be thoroughly
 reviewed and revised accordingly.

 Terms: The terms of use for the service
 can be found here.

 AI Positron Assistant Samples Playground.

 As always, we are interested in your feedback and improvement
 suggestions.

 Manual Installation

 To manually install this add-on, follow this procedure:

 	Go to Help > Install new add-ons to open an add-on selection dialog box. Enter or paste
 https://www.oxygenxml.com/InstData/Addons/default/updateSite.xml in the
 Show add-ons from field or select it from the drop-down
 menu.

 	Select the Oxygen AI Positron Assistant add-on and click
 Next.

 	Read the end-user license agreement. Then select the I
 accept all terms of the end-user license agreement option and click
 Finish.

 	Restart the application.

 Result: The AI Positron Assistant side
 view is now available.

 Connecting to the Oxygen AI Positron Service

 You can use the AI Positron Assistant side view to easily configure
 login details and connect to the Oxygen Positron Service in the web
 browser.

 To initiate the connection process, use the
 Connect button in the AI Positron Assistant
 view (or from the user drop-down menu at the top-right corner of the view).

 Note: The Oxygen Positron Service uses by default the
 OpenAI ChatGPT engine version 3.5 API to propose document generation and
 change suggestions.

 AI Server Requests and Credits

 Each user has a limit to the number of requests that are sent to the AI
 server each month and this is managed through the use of credits.

 Generating and Refining Content

 Once you log in to the server, the following actions for generating content are available
 in the Actions drop-down menu at the top of the AI
 Positron Assistant side view (and also in the AI Positron
 Assistant submenu within the contextual menu, and in the
 AI main menu). The progress and results of triggering an action are
 displayed in the main
 chat pane:

 	Content Generation

 	

 	New DITA Topic - Generates a DITA XML
 topic based on a text description entered in a popup dialog box.

 	Continue Writing - Generates additional text based on the
 content preceding the cursor position.

 	

 Short Description - Generates a short
 description (inside a <shortdesc> element) based on a
 summary of the selected text (or the entire document if there is no selection).
 You can configure the style and the approximate number of sentences to be
 generated.

 	

 Index Terms - Generates a
 <keywords> element that contains index terms obtained
 from the selected text (or the entire document if there is no selection).

 	Follow Instructions (available when editing schemas, XSLT
 stylesheets, and Schematron files) - Replaces the selected
 instructions with content generated based on them.

 	Rewrite

 	

 	Correct Grammar - Generates a suggestion for
 correcting the grammar and spelling within the selected content.

 	Improve Readability - Modifies the
 selected content to improve readability and fix grammar/spelling errors. If you
 hover the mouse prompt over this button, a Settings button
 becomes available in the top-right corner. Clicking the
 Settings button opens a pop-up window where you can
 choose the writing level of the content to be generated. You can choose between:
 5th grade (Very Easy), 8th grade (Plain
 English), and College (Advanced).

 	Use Active Voice - Generates a
 suggestion for replacing the selected content with content that has been converted
 from passive to active voice.

 	Itemize - Generates a suggestion for
 converting the selected content into a list of items.

 	Join Items - Generates a suggestion
 for converting the selected list of items into a paragraph.

 	Overview

 	

 	Answer Questions - Generates
 answers to questions that the AI finds within the selected content (or the
 entire document if there is no selection).

 	Generate Questions - Generates a
 list of five questions that are answered within the selected content (or the
 entire document if there is no selection).

 	Summarize - Generates a summary of
 the selected content (or the entire document if there is no selection).

 	Readability - Generates suggestions
 for changing the selected content (or the entire document if there is no
 selection) to improve its general readability.

 	Translation

 	

 The actions in this category translate the selected text to the target language
 (English, German,
 French, Japanese), while preserving
 the original XML markup.

 	Marketing

 	

 	Release Notes - Creates release
 notes based on a set of features or issue ticket numbers with optional
 descriptions.

 	Marketing Post - Creates a
 marketing post based on a list of ideas or release notes.

 	Improve SEO - Rewrites the content to enhance search
 engine optimization.

 	Pain-Agitate-Solution - Rewrites
 the content using a marketing style based on the
 Pain-Agitate-Solution framework.

 	Features-Advantages-Benefits -
 Rewrites the content using a marketing style based on the
 Features-Advantages-Benefits framework.

 Tip: Custom actions can be configured in the AI Positron Assistant preferences
 page.

 AI Positron Assistant View

 The add-on provides access to the AI Positron Assistant side-view.
 If the view is not displayed, it can be opened by selecting it from Window > Show View.

 Figure 1. AI Positron Assistant View

 [image: ../images/ai-chat.png]

 The Actions drop-down menu at the top of the
 AI Positron Assistant view contains the available AI-powered actions that can be used to generate
 and refine content. Simply select the action to trigger it. You can hover the mouse
 cursor over an action to see a description of what the action does. A set of 5 recently
 used
 actions are also available in the Actions drop-down menu.

 The [image: ../images/ai-record18.png]Record button in the
 top-left corner of the view allows you to create
 custom actions or prompts by recording changes.

 There is also a user drop-down menu at the top-right corner of the
 AI Positron Assistant view that contains the following:

 	My account - Opens a webpage where you can
 see your current subscription package and credit status.

 	Disconnect - Disconnects Oxygen from
 the Oxygen Positron Service.

 	Preferences - Opens the Oxygen AI Positron
 Assistant preferences page where you can configure the
 AI Positron service address and provide a
 Context for the user that the AI will use to create more
 relevant and personalized responses.

 The main chat pane presents the results after processing an action and
 allows you to further refine the responses by sending messages to the Positron
 service platform. When an AI Positron action is triggered, the chat pane displays
 the
 progress and results.

 The response is received from the server in streaming mode (the AI sends chunks of
 the
 response as it is being generated rather than waiting to send the entire response
 after it
 is generated). Once the entire response is received from the server, the following
 actions
 are available under the response:

 	Insert/Replace - Inserts the response at the cursor location within the
 document (or replaces the selected content).

 	Preview - Allows you to preview the content that would be inserted at the
 cursor location within the document.

 	Copy - Copies the response to the system clipboard.

 The Chat History drop-down toolbar button makes it easy to go back
 to previous conversations and continue them.

 You can use the bottom pane to refine the response by sending a message
 to the AI platform and it will generate a new response based upon your message. You
 can
 create your own favorite prompts and use supported variables to specify the content
 that is
 sent to the platform. You can use the [image: ../images/ai-fav-drop18.png]Favorites drop-down button to store a favorite prompt. You can use the
 [image: ../images/ai-var-drop18.png]Insert Variables
 drop-down button to select one of the supported variables:

 	${selection} - Expands to the currently selected
 content.

 	${document} - Expands to the content of the entire
 document.

 Tip: Previously sent prompts can be modified directly in
 the chat thread. Once a prompt is edited, a new chat thread is started based on the
 new
 prompt's content. For edited prompts, you can use the [image: ../images/Next16.png]Next/[image: ../images/Previous16.png]Previous buttons to navigate between chat
 threads.

 To clear the information in the chat pane and start a new chat, click
 the [image: ../images/ai-Chat16.png]New Chat button in the
 top-right corner of the view.

 AI Refactoring

 The AI Positron Assistant add-on contributes an AI
 Positron Refactoring action in the contextual menu (Refactoring > AI Positron Refactoring) of both the Project and DITA Maps
 Manager views in Oxygen XML Editor.

 You can invoke the AI Positron Refactoring action to apply either a
 predefined AI action or a custom prompt to modify the selected resources. The resulting
 AI Positron Refactoring dialog box presents an estimate of the
 amount of credits that will be consumed by the operation, and you have the option
 to preview
 the changes before applying them over the original content.

 For example, you could use the predefined Translate
 to action to translate multiple DITA topics into a certain language or apply the
 Correct Grammar or Improve Readability actions
 on multiple resources.

 AI Positron Assistant Preferences Page

 Various settings can be configured in Options > Preferences > Plugins > Oxygen AI Positron Assistant:

 	AI Positron Service address

 	Currently, there is only one public platform providing this service.

 	Default model

 	The default model is used for the chat pane and for actions that do not explicitly
 specify a fixed model. Each chosen model consumes a certain number of credits per token.

 	Context

 	The context provides useful information about the user to the AI and is used in each
 action and chat request to create more relevant and personalized responses.

 	Load default actions

 	Specifies if default actions are loaded.

 	Additional actions folder

 	You can use this option to specify a local folder where you have stored additional
 actions.

 	Enable XPath Functions

 	Enables the use of AI-specific XPath functions in the application when applying
 Schematron validation or XSLT transformations. This feature is disabled by default.

 	Cache responses and reuse them for identical prompts

 	If enabled (default), responses for identical requests are stored (cached),
 resulting in fewer requests being sent to the AI server and faster completion
 times. A Clear cache button located to the right of
 this option can be used to clear the cache.

 	Cache size

 	Specifies a maximum limit for the cache size.

 	Notify me when the number of requests exceeds

 	You can select this option and specify a number of AI requests that when
 exceeded, a confirmation dialog box is displayed asking if you want to
 continue using the XPath AI functions. If you select "No" for the answer, the
 XPath functions will be disabled.

 Validation Quick Fixes

 When validation problems are displayed in the Results pane, you can
 right-click on a problem and use the AI Positron Fix action to ask
 the AI Positron platform for help with fixing the problem. It will propose content in
 the chat pane (within the AI Positron Assistant view) that can be
 used to solve the problem.

 [image: ../images/ai-quick-fix.gif]

 Creating Custom Actions

 In the AI Positron Assistant preferences
 page, you can define a reference to a folder that contains custom actions.

 Once the add-on is installed, the
 File > New Document wizard can be used to create a new
 AI Positron Custom Actions file that contains a JSON array with
 multiple actions. If the actions file is saved in the custom actions folder defined
 in the
 AI Positron Assistant preferences page, validation and content
 completion will be automatically provided for it.

 The most simple action defines an action id, title, type, and
 context:
 [
 {
 "id": "my.action.id",
 "title": "Improve Grammar",
 "type": "replace-selection-with-fragment",
 "input-type": "markup",
 "context": "Improve grammar in the following content preserving the XML markup:"
 }
]

 Defined actions can contain expandable parameters and their values can be customized
 before
 invoking the action:
 [
 {
 "id": "my.action.id",
 "title": "Improve Grammar",
 "type": "replace-selection-with-fragment",
 "input-type": "markup",
 "context": "${style} Improve grammar in the following content preserving the XML markup:",
 "expand-params":[
 {
 "name": "style",
 "label": "Style",
 "value": "",
 "alternate-values": ["Use active voice.", "Use passive voice."],
 "alternate-value-labels": ["Active voice", "Passive voice"],
 "choice-type": "single-choice"
 }
]
 }
]

 Create Custom Prompts/Actions by Recording Changes

 The [image: ../images/ai-record18.png]Record button in the top-left corner of the view allows you to create new AI
 actions. It opens the Record examples for instructions dialog box
 where you can provide a set of instructions that are intended for the AI to follow.
 Then,
 after clicking the Start recording button at the bottom of the dialog
 box, you can record a collection of examples in the editing area that will help the
 AI
 better follow the given instructions. The examples are recorded from the changes made
 in the
 open editors.

 After providing examples, you need to click the [image: ../images/ai-stop-record18.png]Record button
 again to stop the recording. You will then have the opportunity to save the final
 result as
 either a Positron action or as a favorite chat prompt.

 For example, if you want to add DITA markup to menu cascades, you can follow these
 steps:

 	Click the [image: ../images/ai-record18.png]Record button.

 	In the Record examples for instructions dialog box, enter some
 instructions like: You are a technical writer. Add DITA markup to menu
 cascades.

 	Click Start recording.

 	Open a DITA topic that has a menu cascade without markup (for example: File >
 Export).

 	Edit the topic and add markup, transforming it to:

 <menucascade>
 <uicontrol>File</uicontrol>
 <uicontrol>Export</uicontrol>
</menucascade>

 	Click the [image: ../images/ai-stop-record18.png]Record button again to stop the recording. The
 system generates the following instructions with
 examples:
 You are a technical writer. Add DITA markup to a menu cascades.
###
Input:
 <p>File > Export</p>

Output:
 <p><menucascade><uicontrol>File</uicontrol>
 <uicontrol>Export</uicontrol></menucascade></p>

Input: ${selection}
Output:

 	In the resulting dialog box, save the final result as either a Positron action or
 as a
 favorite chat prompt.

 Custom Validation Rules

 The add-on contributes two XPath extension functions (available in the
 content completion proposals for Schematron, XSLT, XQuery, and XPath) that can be
 used to
 rephrase content or to perform validation checks on existing content:

 	ai:transform-content(instruction, content)

 	

 Use this function from namespace
 http://www.oxygenxml.com/ai/function to automatically transform content
 using AI.

 The function has two string parameters:

 	instruction - The OpenAI instruction to
 be performed on the content.

 	content - The content to be
 transformed.

 It returns a string that represents the transformed content.

 Here is an example of a custom Schematron schema that uses the
 transform-content function to correct the number of words used in
 a short
 description:
 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt3"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
 <sch:ns uri="http://www.oxygenxml.com/ai/function" prefix="ai"/>
 <sch:pattern>
 <sch:rule context="shortdesc">
 <sch:report test="count(tokenize(.,'\s+')) > 50" sqf:fix="rephrase">
 The phrase must contain less than 50 words.</sch:report>
 <sqf:fix id="rephrase">
 <sqf:description>
 <sqf:title>Rephrase phrase to be less that 50 words</sqf:title>
 </sqf:description>
 <sqf:replace match="text()" select="ai:transform-content(
 'Reformulate phrase to be less that 50 words', .)"></sqf:replace>
 </sqf:fix>
 </sch:rule>
 </sch:pattern>
</sch:schema>

 	ai:verify-content(instruction, content)

 	

 Use this function from namespace
 http://www.oxygenxml.com/ai/function to automatically validate content
 using AI.

 The function has two string parameters:

 	instruction - The OpenAI instruction to
 be performed on the content.

 	content - The content to be
 validated.

 It returns a boolean value that represents the result of the
 validation.

 Here is an example of a custom Schematron schema that uses the
 verify-content function to check a short description for
 instances of a passive
 voice:
 <sch:schema xmlns:sch="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt3"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
 <sch:ns uri="http://www.oxygenxml.com/ai/function" prefix="ai"/>
 <sch:pattern>
 <sch:rule context="shortdesc">
 <sch:report test="ai:verify-content('Does the following content has passive voice?', .)"
 sqf:fix="rephrase">The phrase uses passive voice.</sch:report>
 <sqf:fix id="rephrase">
 <sqf:description><sqf:title>Rephrase text to be active voice</sqf:title>
</sqf:description>
 <sqf:replace match="text()"
 select="ai:transform-content('Rephrase text to be active voice', .)"/>
 </sqf:fix>
 </sch:rule>
 </sch:pattern>
</sch:schema>

 Resources

 To see a visual demonstration of the AI Positron Assistant add-on, along
 with various uses cases for using the tool, see the following recorded webinar: AI as a Tool for Technical Content Creation.

 See ways to use AI tools from XSLT stylesheets and Schematron schemas in the following
 recorded webinar: Leveraging the Power of AI and Schematron for Content
 Verification and Correction.

 Related information

 	AI Positron Assistant Samples Playground

 	Blog Post About AI Positron Add-on By Tom Johnson

 	Webinar: AI as a Tool for Technical Content Creation

 	Webinar: Leveraging the Power of AI and Schematron for Content Verification and
 Correction

 Similarities Between Technical Doc Writers and Software Engineers

 I'm a software engineer, working for Oxygen XML Editor along side my colleagues in
 developing tools used by technical documentation writers. I also do lots of technical
 support and sometimes I write small blog posts like this one or update our technical
 documentation.

 Over time, I've come to view the aspects of a technical writer's job (especially a
 tech
 writer who is using standards that have lots of potential for reuse, like DITA XML)
 quite similar to many of the aspects of a software developer's job. So I started putting
 together a list of concepts and the way in which both of these jobs (which may seem
 incompatible with each other at first) would utilize such concepts.

 	Concept

 	Software Engineers

 	Tech Docs Writer

 	Accessibility

 	We build our software products by following accessibility best
 practices, we test our products using screen readers and collaborate
 with our vision-impaired users to fix accessibility problems. We
 also try to make sure there is enough color contrast in the
 application components and icons, that all font sizes are
 configurable and ship various color themes for the
 application.

 	Published technical documentation also needs to be accessible,
 for example by adding alternate text for images and using relevant
 text for links. It's also important to make sure the color theme of
 the published output has enough contrast. WebHelp and PDF outputs
 obtained using Oxygen from DITA XML content are section 508
 compliant.

 	Accurate and Concise Messages

 	We are required to present accurate and concise error messages,
 dialogs, and prompts to our end users. Over time, we've learned to
 pass most of these error messages by our tech docs writers, asking
 their opinion to help improve them.

 	The technical documentation must also be accurate and concise.
 The technical writer's advice can also greatly benefit the software
 developers when they work in developing the messages in the
 application.

 	Balance between Time and Impact

 	Time is a precious commodity, as an engineer I need to make the
 best of the time I have allocated in order to implement a certain
 feature or functionality or to refactor content. If time does not
 allow me to perform a full redesign of a certain functionality I can
 still gradually improve it.

 	The tech docs writer may also not have enough time to refactor
 for example the entire project in a certain way but can gradually
 work towards a certain direction.

 	Building Complex Systems from Basic
 Building Blocks

 	We build small components (classes) and then we use them to build
 projects. We then use the many individual projects to build entire
 large products.
 We keep the small components as simple as
 possible to maximize their reuse potential. With these simple
 components, we build large complex projects.

 	Publications are built by using small topics of information or
 small reusable elements like notes or tables. Even larger
 publications can be built by combining the DITA maps used to
 describe subcomponents of the product.
 Individual topics/tasks
 are small, simple, and easy to follow. With these simple topics,
 you can build large technical documentation
 projects.

 	Code Review

 	We have a stage where the code that was written by someone is
 reviewed by a usually more experienced peer. The code reviewer may
 propose various changes, either small message changes or changes
 from the point of view of someone who knows the architecture of the
 project better. There is also the possibility for a novice to code
 review, as this exposes them to new techniques and they also can
 give a fresh perspective on things.

 	Having experienced technical writers review the work of novice
 writers is a great way to acclimate the novice writers to a specific
 way that the content must be written for a certain company.
 Experienced tech writers can also, for example, better determine if
 the content should be placed somewhere else in the project or if the
 current topic should be split into multiple ones as they have a
 better overall overview of the project.

 	Content Reuse

 	We reuse entire small projects in multiple products. We reuse
 libraries, classes, and functions. Content reuse gives us the
 ability to build products faster and to build different products
 from the same content.

 	Similarly, starting from the top down, entire DITA maps can be
 joined together to create documentation for larger publications,
 topics can be used in multiple places in a DITA map, and elements
 like notes, tables, lists can be reused in multiple places.
 Useful
 links:

 	DITA Reuse Strategies

 	DITA Style
 Guide

 	Copy/Paste vs Reuse

 	

 Sometimes I may decide that it's in the best interest of the
 project I'm working on to copy/paste instead of reusing.

 I may prefer copy/pasting for example in order not to introduce
 dependencies between modules or when using incompatible data
 formats. Or if I plan to alter the content in certain ways.

 I may create auto tests to notify you when the source of truth
 has changed.

 	It's best to reuse as much as possible but sometimes the writer
 may decide that copy/pasting and then maybe making small adjustments
 is a better decision.

 	Custom Validation Rules

 	We have various automatic tools (like Sonar) that report warnings when certain best practices for
 writing the code are not followed. This gives us more consistency as
 we are many devs working on the same code base and the code we
 produce needs to be easily read, understood, and maintained by
 others.

 	Using Schematron
 Rules, technical writers also can impose custom
 validation rules, specific for their project. These custom
 validation rules ensure consistency throughout the tech docs
 project.

 	Deleting Unused/Deprecated Content

 	All mature software products contain components that in time may
 become unmaintained or unused. Over time, such components may become
 security problems or may just contain inaccurate information. So,
 software developers also spend time deprecating and then removing
 these components.

 	Technical documentation also may contain content that is no
 longer accurate or topics that refer to features that no longer
 exist. So, deleting unused content is also a part of a tech writer's
 job.

 	Document my Code/Documentation

 	Most programming languages have support to add comments
 containing documentation about what the code does and why various
 choices were made. This documentation gives more information that
 could not be derived just by reading the code. We also have internal
 wikis with diagrams and descriptions of various architecture choices
 and steps to set up various projects for people who just started
 working on them.

 	It's a best practice to try Implementing your own Style Guide where
 various best practices and architectural decisions for the
 documentation project are described. Such a Style Guide makes
 on-boarding easier and over time, the rules in the style guide may
 start to be automatically applied using Schematron or a terminology
 checker. Publishing customizations should also be documented in a
 style guide and a quick getting started tutorial for people who
 start working on the specific technical documentation project may
 also be useful.

 	Enjoy

 	For the long term, it's good to find particular aspects about
 your job that you particularly enjoy doing. For example, in my case
 I've always been interested in investigating why certain bugs occur
 and following through, spending hours to investigate and solve them.
 I'm also very eager to delete unused code and functionality.

 	Whether it's rewriting/correcting problems in existing content,
 writing new content, adding custom validation rules, helping others,
 discussing with engineers, or improving the architecture of the
 existing technical documentation project, technical writers may also
 have preferred activities. In general, we get to know what each
 person does best within the team and who to ask for advice in
 certain cases.

 	Evolve

 	We need to constantly deepen our understanding of the current
 techniques we use, learn new techniques, and new frameworks or
 programming languages. Learning new things also helps us to obtain a
 different view of the current techniques we are using.

 	By reading various resources like the DITA Style Guide, the DITA 1.3 standard, or the Oxygen XML Blog, a technical writers
 can deepen their understanding of the used standard, what features
 it offers, and what best practices to follow.
 There are lots of
 useful resources about approaching technical documentation
 online like: Diátaxis. And various community
 places where one can ask for help or follow up on
 conversations.

 Sometimes, technical writers also become
 involved in styling the published HTML or PDF outputs, in
 uploading the deliverables to the proper places on the web site,
 producing training material, or receiving user feedback and
 integrating it back in the documentation. So, they move towards
 scripting and being power-users.

 	Helping Yourself

 	When I do not know how to do something, I first try to figure
 things out on my one before asking for help. I use various internal
 resources (our internal wiki) or external resources like Google,
 ChatGPT, StackOverflow. I always tend to remember the solution
 better if I put some effort into finding it myself.

 	Overcoming obstacles by oneself is possible if the company has
 internal wikis or internal style guides that the technical writers
 can use. By helping ourselves, experienced writers develop a certain
 grit that allows them to overcome daily obstacles.

 	Inversion of Control

 	Most of the time, we use libraries developed by us or by others
 to build larger projects. So, our code uses other code. But there
 are frameworks like Java Spring that have
 this concept of inversion of control. With
 this concept, our code does not use libraries, but those libraries
 in turn orchestrate and use our code.

 	The DITA XML standard has the concept of key scopes, which
 allows key references and content key references in topics to have
 different values depending on where the topic is referenced in the
 DITA map. So in a way, your topics contain variable place holders
 that may expand to different content depending on where they are
 used in the DITA Map.
 The DITA XML standard also has this concept
 of content
 reference push. With conref push content can be
 placed in a topic from the outside.

 A DITA topic that
 contains key references is not truly instantiated until it's
 referenced in a certain place in the DITA map.

 	Issues/Tickets List

 	We work internally mostly with Atlassian
 JIRA to create issues/tickets. We have various workflows for
 our issues that allow us to have quality assurance, and
 documentation connected to the same issue ID. The issue connects all
 the commits and modifications made both in the development phase and
 in the documentation phase. So, looking at an issue, I can also see
 links to all changes made to fix and document the issue.
 For some
 projects, we also work with GitHub issues or GitLab
 issues/tickets and although more simple, they also provide us
 with some basic way of keeping track of work
 progress.

 	An issues/tickets list is also very important for tech doc
 writers to keep track of what needs to be done.

 	Learn by Teaching

 	Teaching is a great way to learn more about the concepts
 yourself. You do not need to be highly experienced in a subject
 matter in order to make small presentations in the team about it. I
 sometimes make small presentations to start discussions about the
 subject matter and gather best practices from other team members who
 now more about the subject matter than I do.

 	You can read about an aspect of a standard like DITA XML that you are not using in the
 company (for example, about branch
 filtering or relationship
 tables), make a small presentation in the team, and then try
 to start a discussion about how the feature could be used in the
 tech docs project and what problems it could solve.

 	Managing Dependencies/Linking between
 objects

 	The more dependencies a class, object, or project has, the more
 difficult is to use it in another context. In our work, we try to
 uncouple objects, to decrease the dependencies between them to be
 able to reuse the objects in multiple contexts.

 	There are various linking strategies, the main idea being to avoid direct
 references between topics and instead use indirect links and
 relationship tables. This gives you more flexibility to re-use
 topics in multiple contexts.

 	Metadata/Extensibility

 	From the point of view of a Java developer like myself, support
 for annotations was added to the Java programming language about 20
 years ago and it allowed the creation of various important libraries
 that in a way extend the language to offer all kinds of useful
 functionality.

 	The DITA XML standard has various ways that users can enhance the
 publishing or add metadata that is useful for specific needs:

 	Using the <metadata> element
 and sub-elements to define key words, index terms,
 categories that can be used to add various publishing
 features. The Oxygen WebHelp output uses keywords to enhance
 the search functionality and index terms to create and index
 page.

 	The @outputclass attribute can be set on
 almost all DITA elements and allows you to easily customize
 elements using CSS in the published output. For example, you
 can use it to specify the language of
 codeblock elements.

 	The <foreign> element allows adding
 non DITA XML content and can be used for various
 enhancements like embedding HTML
 content directly in DITA topics.

 	The <data> element can be used almost
 anywhere to specify key value pairs that are later used in
 the published output.

 	The DITA XML standard itself can be specialized or
 restricted using a specific
 procedure.

 This possibility to extend the standard makes it much more
 valuable and allows targeting specific company
 needs.

 	No Appreciation for Fluff

 	The written code should be as compact and easy to read as
 possible. An application's features should again be intuitive to use
 with a user's interface that does not present more than you need to
 accomplish a certain task.

 	Small topics describing key concepts, small tasks describing how
 various things can be accomplished. Precise messages, simplified
 English, no fancy words, no thesaurus.

 	Obtaining multiple products from the same
 code base

 	Using configuration files, we can reuse an entire product code
 base to create multiple products, each with a specific subset of
 features.

 	Using profiling/filters or multiple main DITA maps, a DITA XML
 based project can be used to create user guides for multiple
 products.

 	One trick pony / Jack of all
 trades

 	Even if over time we specialize and become very productive with
 one set of tools and when working on a certain aspect of the
 application, having a larger overview and being able to use other
 tools/languages/frameworks when necessary gives us lots of
 flexibility to help members of other teams or to make changes to
 sub-projects that we are not directly involved in.

 	Being able to write documentation in multiple formats (Markdown,
 DITA XML, MS Word), being able to use various version control
 systems like Git or content management systems gives you the ability
 to apply for and be able to perform any technical documentation job,
 besides the benefit of using much of the workflows and tools other
 people in the company might use.

 	Overview of Complex Systems

 	Either when making a small improvement or implementing a large
 feature, having an overview of the entire project's architecture
 helps a lot.

 	Having an overview of the documentation project helps you know
 where to make a change, what pleasant or unpleasant side effects it
 generates and how to possibly re-structure the content to facilitate
 making that change. Content reuse adds a lot of efficiency to the
 process of building a user's guide and reusing large chunks of
 content between user manuals. Content reuse unfortunately also
 sometimes makes it easier to propagate errors in multiple
 places.

 	Pair Programming

 	We have this concept that we apply from time to time in which two
 people work on the same issue from the same computer. These people
 can be peers with the same knowledge, in which case one of them
 thinks about the larger context in which the issue is resolved and
 asks questions while the other implements it. Or the engineers can
 be an expert and a novice, in which case the novice directly sees
 how the expert considers and implements the issue.

 	I'm not sure if in the domain of tech docs writing people use
 such pair docs writing but I think it could also benefit a novice to
 see exactly how people with more experience organize themselves,
 understand the requirements, and work on issues.

 	Project Structure and Naming
 Resources

 	Experienced software developers are interested in properly naming
 things. We try to give good names to functions, variables, and
 packages. We try to be consistent when naming things using compound
 names, either using hyphens or upper-lower-case sequences.

 	It makes sense for technical documentation writers to also have
 best practices when it comes to a project's structure, how files
 should be named, where images should be stored, how key names should
 be given, and so on. Sample Project.

 	Publishing Orchestration

 	We have various automated flows that generate nightly build
 installation kits for our product that can be further tested by the
 QA team.

 	Although the published output can be obtained from an Oxygen
 installation by running a transformation scenario, over time it's a
 good idea to automate the publishing by using an integration server
 like Jenkins, for example, to constantly poll the user guide project
 for modifications and update an internal web site with the latest
 HTML or PDF outputs to show how the documentation is evolving and
 give material to engineers who want to review the published content.
 For the Oxygen XML blog, for example, a Gradle build
 file is used to automate the publishing.

 	Read the Docs

 	We learn a lot by doing, or by copy pasting or reusing content
 from other similar projects that we have. But sometimes taking the
 time to read the documentation for the frameworks and libraries that
 we use is really worth it.

 	By reading the DITA 1.3 standard documentation, for
 example, a technical documentation writer might find various
 features that can be used in their project. They might also
 understand certain limitations in the way things work.
 There are
 lots of resources for
 learning DITA or for learning how to better use Oxygen to edit
 DITA XML content. So, it is sometimes worth taking the time to
 explore the tools you are using and the capabilities of the
 standard.

 	Requesting Help from Peers

 	Besides an internal wiki of content and procedures, we rely on a
 network of colleagues, some from our teams, some from others or from
 the system admins team. Over time, we come to know each other's
 strengths and know who to call when we need advice. Helping someone
 else usually takes priority over the current task.

 	Besides asking their peers for help, technical documentation
 writers also have various engineers and subject matter experts who
 could help when writing content either by giving feedback or by
 providing some initial content (some notes for example) to be used
 for the official documentation.

 	Security

 	We do our best to protect our applications from security
 vulnerabilities by updating old libraries and by considering various
 scenarios in which attackers would attempt to gain control over an
 application.

 	Besides keeping the user guide contents in a secure location to
 avoid exposing information to the competition or features that have
 not yet been released, the HTML output obtained from the user guide
 contents also needs to be updated to contain the latest Javascript
 libraries and not be susceptible to vulnerabilities when loaded in a
 web browser.
 Content in the user's guide in general also needs to
 be considered from the point of view of not giving an attacker
 details about how the product could be configured for use in
 other scenarios other than the ones intended by the
 developers.

 	Server Side Validation

 	Validation and automated tests run on the server side (we use a
 Jenkins integration server) whenever changes are made to source code
 for a certain project. If automatic tests fail, emails are sent to
 the people who have committed the latest changes that broke the
 builds.

 	
 Whenever you have multiple topic files, filters, or content
 reuse, you may end up with potential validation problems in the
 edited content, problems ranging from broken links to invalid ID
 attribute values or invalid topics.

 Oxygen has a very useful
 Validate
 and check for completeness action that checks
 lots of potential problems in the context of a DITA map, but maybe
 not all people run such an action before they commit. Such an action
 can also be scripted to run on the
 server side in an integration server like Jenkins, for example.

 	Terminology

 	There are lots of ways that a message can be conveyed. All
 messages presented to the end user need to have a certain style,
 tone, and use plain language.

 	Controlled terminology is also an important
 aspect of a technical writer's job.

 	Translation

 	In general, all user interface strings in an application will be
 translated to multiple languages so we need to take this into
 account when designing the application.

 	A DITA XML project that needs to be translated into multiple
 languages also needs to follow a sequence
 of best practices.

 	User's Point of View

 	All features need to be discussed and implemented from the point
 of view of the people who will actually benefit from using them. For
 technical people, this is sometimes difficult to do but we try to
 constantly remind ourselves to implement features that help certain
 real-world workflows to be performed by the end user and not for the
 sake of closing tickets.

 	The documentation also needs to target certain user profiles and
 be written to help people perform tasks and understand concepts. The
 product knowledge level of the end user is almost never the same as
 that of the tech writer.

 	User Feedback

 	It's important to get feedback from end users. This feedback
 gives us ideas about what to implement in the future and also allows
 us to modify existing features to better accommodate certain
 workflows. So, we try to make it as easy as possible to give
 feedback, we have a Report problem action
 directly in the application, we have a support email address, a
 forum, user's list, and on each of our user's manual pages, there is
 also a feedback comments section.

 	Receiving user feedback for the written documentation is also
 very important to improve the documentation to cover the actual user
 needs. For example, the Oxygen Feedback platform
 can be easily embedded in the generated web pages to allow users to
 provide feedback related to the documentation. We use it for the
 Oxygen user's manual, blog, and it's a very good mechanism to get in
 touch with users and to improve the docs.

 	User Interface

 	An application may work very well from the functionality point of
 view but if it does not look very nice (ugly color theme, ugly
 icons, not intuitive user interface layouts) it will not end up
 getting used very much.

 	A published user's guide also needs to have appropriate colors
 and fonts to improve readability and find ability. So, besides the
 actual content care, decisions must also be made in terms of what
 font styles and sizes to use, or what color theme to
 implement.

 	Version Control

 	We use a mix of Git repositories and Subversion repositories for
 our software projects. Version control allows us to collaborate, to
 have a history of changes, and to have release branches for our
 products.

 	Using a version control system like Git similarly gives the
 possibility to collaborate on documentation projects with various
 workflows.
 As an alternative, you can use a
 commercial content management system or in the cloud editing
 solution.

 No matter what storage system you use to
 collaborate, having a history of changes and release branches is
 a must.

 	Working with AI tools

 	Developers can work with ChatGPT to ask advice about how to write
 various pieces of code, especially in programming languages that
 they are not familiar with. They can also ask for help re-writing
 messages or translating small pieces of content.

 	Working directly with AI tools or using an add-on like the Oxygen AI Positron Assistant
 view, tech doc writers can also use the AI tools to improve
 readability, remove grammar problems, re-write content in various
 styles, or translate content. So, AI tools are valuable for writers
 as co-pilots.

 Writers and software engineers have lots of things in common because we are all working
 with language and we communicate in a specific language. Computer programming languages
 contain less words and are more simple than the English vocabulary, but in the end
 we
 are all in the market of describing, expressing, and building large systems using
 simple
 terms.

 If you have feedback about these concepts and how they influence your writing, it
 is as
 usual, welcomed.

 Migrate

 Oxygen XML Editor provides various facilities to migrate content from one format to
 another.

 	Migrating to a Structured Standards-based Documentation Solution

 	Migrating Various Document Formats to DITA

 	How to Migrate from Word to DITA

 	Batch converting HTML to XHTML

 	Migrating Unstructured Adobe FrameMaker Content to DITA

 	Automation - Using DITA XML Topic Titles to Generate File Names

 Migrating to a Structured Standards-based Documentation Solution

 Potential clients come to this world of structured content authoring from two main
 sources:

 	They are starting fresh and after a little bit of comparing between structured and
 unstructured editing, between opened and closed solutions and some soul searching
 they
 come to regard structured authoring with a specific XML standard in general (and usually
 DITA in particular) as the possible solution for them.

 	They are migrating from a previous unstructured or structured solution.

 I think people in this second category start thinking about structured writing when
 they
 start encountering certain limitations with their current approach. These limitations
 they
 experience with their current system could be:

 	

 The need to reuse more content.

 With structured XML authoring in general and with DITA in particular you
 have so many ways of reusing content. In a previous blog post I tried to come up with
 an
 overview about all the ways in which you can reuse content using DITA: DITA Reuse Strategies

 	Produce multiple outputs from the same content using some complex profiling conditions
 which are not supported in the current work flow.

 	

 Stop thinking about how the content is styled.

 You may want to focus more on the actual content and on semantically tagging it than
 on
 the way in which it will be presented in a certain output format.

 	

 Publish to more output formats than the current editing solution allows.

 Using a widely adopted open source standard like DITA for documentation also
 means having access to a variety of commercial and open source tools to generate various
 output formats from it. For example for obtaining the PDF you have about 5-6
 distinct possible solutions:Possibilities to obtain PDF from DITA.

 	

 Enforce certain internal rules on the documents.

 It's hard to impose best practices in unstructured documents. But with structured
 XML
 content, you can use Schematron to easily cover this aspect and even to provide quick
 fixes for your authors: Schematron Checks to help Technical Writing.

 	

 Benefit of advice and help from a larger community of writers and developers.

 When you are using a closed source solution, you may have only one forum and a couple
 of people willing to help. When you have a larger community you will be able to reach
 out with a single email to lots of people, and somebody may want to help you.

 	

 Share documentation between different companies.

 If a larger company which uses structured writing takes over a smaller one, the smaller
 company will need to adopt structured writing as well.

 	

 Own your content.

 Some editing solutions are closed source, you are forced to use a single tool because
 there are no other tools being to read that format. Then you need to ask yourself
 the
 question: Is this content actually mine?

 	

 Problems with your current tool vendor.

 If the format is closed source and the tool vendor is not responsive to your needs,
 you
 need to somehow move your content over to a market with multiple tool vendors available
 because competition also means smaller prices and better customer support.

 Switching to structured content writing also has its problems. And I think the main
 ones are
 these:

 	The people. The fact that we all are reluctant to change. The learning curve. Writers
 might need to re-learn how to structure and write their documentation. Besides the
 technical aspects they will need to learn to divide content in small modules and to
 reuse
 parts in multiple places. Writers may not be willing to do this. We usually are very
 reluctant to change tools if we do not see instant benefits deriving from it.

 	Effort to convert the current available content to structured content. You can either
 choose manual conversion or automated conversion or in most cases a mixture of the
 two.
 Conversion will never be perfect, you will still need to go through the entire content
 and
 re-structure it taking into account module-based editing.

 	Customize the obtained output format. You may get out of the box various outputs from
 your content but you will always need to customize it to adhere to company standards.
 If
 you are using the DITA Open Toolkit for publishing you will need basic XSLT
 development skills to customize the PDF and CSS skills to customize the
 XHTML based output.

 	Money. You need to spend more money to get new tools, possibly a new CMS.
 Although I consider that starters, for a pilot project DITA does not need to be
 expensive. Here's how we're using DITA internally for our user's manual: Collaboration for Documenting a Software Product using DITA.

 	Sometimes you might need to control the styling of your obtained output so much and
 it
 would be impossible to separate the styling information from the content.

 So can we draw a conclusion from all this?

 Well, maybe not everybody interested in structured authoring will succeed to convert
 to it.
 But I think that one thing will hold true in most cases:

 Once you convert to structured content, you will never go back.

 Migrating Various Document Formats to DITA

 Most companies do not start new DITA-based projects from scratch. They already have
 content
 written in various other formats and somehow they need that content converted to DITA.
 In this
 blog post, I will offer some conversion advice depending on the format of your current
 project.

 Migrating DocBook Content to DITA.

 You can migrate one or multiple DocBook documents to DITA using the Oxygen Batch
 Documents Converter add-on: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

 The DocBook to DITA conversion contains an option named Create DITA maps from
 DocBook documents containing multiple sections. When this option is selected, all
 sections from your DocBook document will be separated into individual DITA topics
 and
 referenced in a DITA map.

 Migrating Microsoft Word Content to DITA

 The Oxygen XML User Manual has a detailed topic enumerating the possibilities to convert
 Microsoft Word content to DITA: https://www.oxygenxml.com/doc/ug-editor/topics/ooxml-to-dita.html.

 Migrating Excel Content to DITA

 You can use Oxygen's Smart Paste functionality to copy content
 from an Excel spreadsheet and paste it inside an opened DITA topic. Also, as an alternate
 possibility, the Oxygen Batch Documents Converter add-on was updated to be able to batch
 convert Excel to DITA: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

 Migrating LibreOffice Content to DITA

 LibreOffice documents can be saved in Word format, and once you do that, you can convert
 the Word content to DITA as described above. Alternatively, you can save the LibreOffice
 documents to DocBook and then apply the DocBook to DITA conversion technique described
 above.

 Migrating Google Docs to DITA

 You have three possibilities to convert Google Docs to DITA using Oxygen:

 	Copy/Pasting from Google Docs to a DITA Topic opened in Oxygen in the Author visual
 editing mode should work and convert the pasted content to DITA.

 	Save the Google document as OpenDocumentFormat (ODF) then save the ODF document
 as DocBook with Libre Office, then apply the DocBook to DITA
 transformation scenario shipped in Oxygen to convert DocBook to DITA.

 	Save the Google document as HTML then use the Oxygen batch converter add-on to convert
 it to DITA: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

 Migrating Markdown Content to DITA

 The DITA Open Toolkit publishing engine bundled with Oxygen allows you to reference
 Markdown files directly in a DITA map and either publish them directly or export the
 Markdown files to DITA one by one: https://www.oxygenxml.com/doc/ug-editor/topics/markdown-dita-2.html. If you want to convert multiple Markdown documents at
 once, you can use the Oxygen Batch Documents Converter add-on: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

 Migrating HTML Content to DITA

 Using Oxygen's Smart Paste functionality, you can open the
 HTML documents in a web browser, then copy the contents and paste it in a DITA topic
 opened
 in Oxygen's Author visual editing mode. If you want to convert multiple HTML files,
 you can use the Oxygen Batch Documents Converter add-on: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

 Migrating Unstructured FrameMaker to DITA

 There is a detailed blog post enumerating the possibilities to convert Unstructured
 FrameMaker content to DITA: Migrating Unstructured Adobe FrameMaker Content to DITA.

 Migrating MadCap Content to DITA

 This open source project contains such a stylesheet which attempts to
 convert a Flare project to DITA XML and instructions about how to use it. As an alternative
 some recent MadCap versions seem to have facilities to export content directly to
 DITA.

 Migrating Confluence Content to DITA

 To convert Confluence content to DITA, you can use the Oxygen Batch Documents Converter
 add-on: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html.

 You first need to export the content to HTML. For this, log in to your Confluence
 account
 and navigate to the specific space that you want to export. Then go to Space
 Settings→Export space and choose to export it as HTML. Then, back on
 Oxygen, you can then use the Confluence to DITA action (available once the
 add-on is installed) to convert the exported index.html file into a
 DITA map with topics.

 Migrating AsciiDoc to DITA

 The Asciidoctor
 third-party application can be used to convert AsciiDoc content to DocBook. Then,
 you can
 convert the DocBook content to DITA using the method described here.

 Migrating reStructuredText to DITA

 The Pandoc
 third-party application can be used to convert reStructuredText content to DocBook
 or HTML.
 Then, you can convert the DocBook or HTML content to DITA using the Oxygen Batch
 Documents Converter add-on.

 Migrating LaTex to DITA

 You may use a third-party application (like Pandoc) to convert LaTex content to Word or HTML. Afterwards use
 the Oxygen Batch Documents Converter: https://www.oxygenxml.com/doc/ug-editor/topics/batch-converter-addon.html

 Migrating Other Formats to DITA

 You may find third-party applications (like Pandoc) that can convert your content to HTML or to some kind of
 XML format like DocBook. Once you have HTML or DocBook content, you can convert them
 to DITA
 using the advice above.

 How to Migrate from Word to DITA

 The need for migrating Microsoft Office® Word documents to XML formats, and
 particularly to DITA, is quite a frequently encountered situation. As usual, migration
 from
 proprietary formats to XML is never perfect and manual changes need to be made to
 the
 converted content. However, the methods below should help you find the best approach
 for your
 particular case:

 Oxygen Batch Documents Converter add-on

 The Oxygen Batch Documents Converter add-on can be installed in Oxygen and it allows
 you to convert one or more documents to various formats.

 More details about the main stages of the Word to DITA migration using the Batch
 Documents Converter add-on: Migrating MS Word to DITA using the Batch Documents Converter

 Note: The Batch Documents Converter add-on is the recommended way to convert
 one or multiple Word documents to DITA content.

 Smart Paste

 	Open the Word document in MS Office, select all the content, and copy it.

 	Open Oxygen and create a new DITA topic in the Author visual editing mode.

 	Paste the selected content. Oxygen's smart paste functionality will attempt to convert
 the content to DITA.

 Word to HTML to DITA

 	Save your MS Office Word document as HTML.

 	Once you obtain that HTML, you have two possibilities:

 	In Oxygen, Select File->Import->HTML File to import
 the HTML as XHTML. Then open the XHTML in Oxygen and in the "Transformation
 Scenarios" view there should be four pre-configured transformation scenarios
 to convert XHTML to DITA topics, tasks, references, or concepts.

 	Open the HTML file in any Web browser, select all of its content, and copy it.
 Then open Oxygen, create a new DITA topic in the Author visual editing
 mode, and paste the selected content. Oxygen's smart paste functionality will attempt to
 convert the HTML to DITA.

 Word to DocBook to DITA

 	Open the Word document in the free Libre Office application and save it as
 DocBook.

 	Open the DocBook document in Oxygen.

 	Run the predefined transformation scenario called DocBook to DITA.

 Word to DITA using DITA For Publishers

 	If the Word document is in the new DOCX format you can open it in Oxygen's
 Archive Browser view and then open the document.xml file contained in
 the archive.

 	Run the predefined transformation scenario called DOCX DITA. This ANT
 scenario runs the following build file:
 OXYGEN_INSTALL_DIR/frameworks/dita/DITA-OT/plugins/net.sourceforge.dita4publishers.word2dita/build-word2dita.xml
 over the DOCX archive and should produce a DITA project that contains a
 DITA map and multiple topics.

 	You may need to do some reconfiguring to map DOCX styles to DITA content.

 Note: This method may also be helpful if you want to run it automatically with scripts,
 since it is based on the DITA OT and Dita For Publishers plugins.

 	Migrating MS Word to DITA using the Batch Documents Converter

 Migrating MS Word to DITA using the Batch Documents Converter

 This blog post presents how you can migrate from MS Word to DITA using the Oxygen Batch Documents Converter add-on.

 The migration process has three main stages:

 	

 Preparing Word Document for Migration

 	

 Converting the Word Document

 	

 Post-processing the DITA Content Converted from Word

 A webinar presenting this migration is available here: Working with DITA in Oxygen - Migrating to DITA
 and Refactoring

 A list of frequently asked questions about the migration process can be found here:
 Word to DITA Conversion FAQ

 	Preparing Word Document for Migration

 	Converting the Word Document

 	Post-processing the DITA Content Converted from Word

 	Word to DITA Conversion FAQ

 Preparing Word Document for Migration

 The Word to DITA conversion uses the styles found in the Word document for creating
 structure and formatting the text into the output document. The converter ignores
 the
 font, size or color set on text content. To achieve the best results, the Word document
 has to be well styled.

 This preparation step assumes correcting various cases when formatting of the content
 was
 not made using styles. These are the things that you should take into account when
 checking the Word document:

 	

 It's important to make sure that titles and headings were formatted using styles
 because the topics and sections structure of the output document results from
 these.

 This is an example of bad formatting: Instead of using the "Heading 1"
 style, when formatting a title paragraph, the writer changed its font, size and
 color, keeping the default "Normal" style:
[image: ../../images/badPractice.PNG]

 	
 For the rest of the content, you can try to use the default Word styles for
 creating semantics where it's possible.

 This is an example of bad
 formatting: Instead of using the "Quote" style, when formatting a
 paragraph, the writer added it between quotes characters and changed its font
 and alignment keeping the default "Normal" style:
[image: ../../images/quote.PNG]

 Converting the
 paragraphs containing the "Normal" style will result in DITA p elements. So if you
 omit this step, you also have the option of adding semantics by post-processing the
 resulting DITA content.

 Note: The text content formatted using the
 bold, italic, underline, strike-through, subscript or superscript actions
 are handled by the converter. So you don't need to replace them with
 correspondent styles like "Strong" and "Emphasis".

 	Save the shapes as SVG images because the converter doesn't support them. See the
 following link for more information: How can I preserve the Word shapes?

 Converting the Word Document

 For converting the Word document you have to install the Batch Documents
 Converter add-on in Oxygen. For this, you can follow the installation procedure
 from the documentation.

 Configuring Word styles mapping

 The Word to DITA conversion has two main steps: Word to HTML to DITA. The converter
 allows customising the first step by setting a mapping between Word styles and HTML
 elements. It already contains a default mapping configuration and because of this,
 it knows to handle the default styles and the custom styles that are based on the
 default styles.

 Here you have more information about the Word Styles Mapping
 option: Conversions from Word

 This is an example of styles configuration: How can I fix unrecognized style warnings?

 Configuring the Maximum Heading Level for Creating Topics

 The converter has an option named "Maximum Heading Level for Creating Topics"
 in the Oxygen Preferences > Batch Documents Converter preferences page that allows setting a maximum heading level to
 process as a DITA topic. The headings with a higher nesting level will be converted
 to <section> elements.

 This option can correspond with the value of the Show levels
 option that you configure in MS Word for generating a table of contents.

 For example, consider a document with the following headings hierarchy in the Word
 document:
[image: ../../images/Hierarchy.PNG]

 if you keep the default 5 value for the Maximum Heading Level for Creating
 Topics option, all Word sections will be converted to DITA topics. If you
 set the option to 3, the "Species" and "Characteristics" Word
 sections will be converted to DITA sections inside the "Salvia" DITA
 topic.

 Converting the document

 You can invoke the Word to DITA action from the following
 places for converting the Word documents:

 	Batch Documents Converter from the
 Tools menu.

 	Batch Documents Converter in the contextual menu from
 the Project view.

 	Additional conversions from the FileImport menu.

 	
 Import from the Append
 child, Insert Before, or
 Insert After sub-menus in the contextual
 menu from the DITA Maps Manager view. Note
 that these actions automatically insert references to the resulting
 documents into the DITA map.

 The Word to DITA conversion dialog contains an option named Create DITA
 Maps from Word documents containing multiple headings that allows us
 to choose if the output will be a single DITA Topic or a DITA Map.
 When the option is checked, the resulting DITA topics will be extracted into
 separate files and referenced into an output DITA Map, otherwise, the topics will
 be
 grouped into a DITA Composite file. The resulting topics can be controlled using the
 Maximum Heading Level for Creating Topics option.

 Post-processing the DITA Content Converted from Word

 Oxygen provides refactoring actions that can be used for organizing and
 customizing the resulting DITA documents, to take into account various DITA
 best practices.

 These are some of the most used refactoring operations that can be applied
 after the conversion process:

 	In the Project view, the Move
 Resource and Rename Resource actions can
 be applied to DITA or non-DITA resources: https://www.oxygenxml.com/doc/ug-editor/topics/dita-main-files.html#dita-main-files__moving_or_renaming_nondita_resources

 	

 In the DITA Maps Manager view you can arrange the
 topics and nodes using the drag and drop support: https://www.oxygenxml.com/doc/ug-editor/topics/dita-maps-manager.html#dita-maps-manager__drag_and_drop_in_the_dita_maps_manager

 	There are refactoring actions for converting between DITA topic types. So, if
 the resulting topics look more like DITA Tasks or DITA Concepts,
 you can simply convert them using refactoring actions like Convert to
 Task, Convert to Concept and others.

 	There are actions for generating unique IDs for elements (Generate
 IDs) or changing the ids of the topics using the file names
 (Change topic ID to file name).

 	When resulting documents contain nested topics or sections, you
 can use Convert Nested Topics to New Topics or
 Convert Sections to New Topics to extract new
 files.

 	Topics can be extracted from the map hierarchy into a new DITA map, using the
 Extract to new DITA Map action.

 	

 The Convert DITA Map to Bookmap and Convert Bookmap to DITA
 Map actions allow converting between map and bookmap
 types.

 	

 For converting links inside your documents from direct addressing to
 indirect key-based addressing, you can use the Define keys for
 all topic references action.

 	There are also operations for modifying elements inside documents: https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html#predefined-refactoring-operations__refactoring_operations_for_elements

 In the main menu Tools > XML Refactoring dialog you can find the list of all built-in refactoring operations:
 https://www.oxygenxml.com/doc/ug-editor/topics/predefined-refactoring-operations-x-tools.html

 If you want to make custom batch changes to the converted documents you can create
 a
 custom refactoring operation: https://www.oxygenxml.com/doc/ug-editor/topics/custom-refactoring-operations-x-tools.html.

 Example of a custom refactoring operation.

 Word to DITA Conversion FAQ

 How can I fix unrecognized style warnings?

 When converting a Word document, the styles that don't have a mapping in the
 Word styles mapping table from the preferences page are converted
 to simple paragraph elements and a warning is reported for each of them in the
 Results view.

 As an example, suppose I have converted the Word document and I see the following
 warnings in the Results view:
[image: ../../images/unknownStyles.PNG]

 Here are the steps that you should follow for this configuration:

 	Open the Plugins / Batch Documents Converter preferences page
 in Oxygen.

 	To fix the Unrecognized "Document Title" style for "p" Word element
 warning, add a new row in the Word styles mapping table with
 the following cells:

 	Type "p" in the Word element cell (because the
 unrecognized style was found on a Word paragraph).

 	Type "Document Title" in the Word style cell.

 	In the "HTML elements" cell, you need to add a corresponding HTML element. For
 this example, a corresponding element is "<h1>" for the
 default mapping of the "Title" style. So, type "h1:fresh" into this cell.
 The ":fresh" suffix instructs the converter to create a new element every time it
 finds this kind of paragraph. When it's not set, the converter will try to reuse
 the elements and combine sequences of the same style of paragraphs into a single
 element.

 	To fix the Unrecognized "Keyboard Key" style for "r" Word element
 warning, add a new row in the Word styles mapping table with
 the following cells:

 	Type "r" in the Word element cell (because the
 unrecognized style was found on a Word character).

 	Type "Keyboard Key" in the Word style cell.

 	In the HTML elements cell, you need to add a
 corresponding HTML element. For this example, a corresponding element is
 "<kbd>" for the default mapping of the "HTML Keyboard"
 style. So, type "kbd" in this cell.

 After completing these steps, you should have these two rows in the configuration
 table:

 	p

 	Document Title

 	h1:fresh

 	r

 	Keyboard Key

 	kbd

 For more information about the Word styles mapping configuration,
 see the following section from the documentation: Conversions from Word.

 How can I configure the styles mapping when the wanted element doesn't exist
 in HTML?

 A frequent case when setting the mapping configuration for a custom style is to not
 find
 a correspondent element in HTML, although one exists in DITA.

 As an example, suppose I have a Word document that contains a character custom style
 named "filepath". We know that a correspondent element exists in DITA, but we cannot
 find
 one in HTML.

 These are the steps that can be applied to handle this case:

 	Go to the Plugins / Batch Documents Converter preferences page
 and add the following mapping in the Word styles mapping
 table:

 	r

 	Filepath

 	i.filepath

 	Convert the Word document to DITA. The characters styled with the Filepath
 style in Word are converted to the <i> element with the
 "filepath" @outputclass attribute.

 	Move the output files to your project, select them, and apply the "Rename
 element" refactoring operation using the "//i[@outputclass = 'filepath']"
 XPath for matching the target <i> element and changing them to
 the <filepath> DITA element.

 	Apply the "Remove attribute" refactoring operation using the
 "//filepath[@outputclass = 'filepath']" XPath for matching the
 target elements and deleting the @outputclass
 attributes.

 Instead of steps 3 and 4, you can also create a custom refactoring operation that
 makes
 these two changes, like this:

 	Create an XSLT file (for example, named
 batch-converter-post-processing.xsl) that iterates over all
 elements from the document, finds the <i> elements with the
 "filepath" @outputclass attribute, and replaces them with the
 <filepath> elements without copying the
 @outputclass attribute:

 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema" exclude-result-prefixes="xs" version="2.0">

 <xsl:template match="@* | node()">
 <xsl:copy>
 <xsl:apply-templates select="@* | node()"/>
 </xsl:copy>
 </xsl:template>

 <xsl:template match="i[@outputclass = 'filepath']">
 <xsl:element name="filepath">
 <xsl:apply-templates select="node()"/>
 </xsl:element>
 </xsl:template>
</xsl:stylesheet>

 	Create an XML Refactoring operation descriptor (for example, named
 batch-converter-post-processing.xml) that references the
 stylesheet and provides
 descriptions:
 <?xml version="1.0" encoding="UTF-8"?>
<refactoringOperationDescriptor xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns="http://www.oxygenxml.com/ns/xmlRefactoring" id="op_qzq_y2x_nsb"
 name="Post-processing Batch Documents Converter">
 <description>Post-process the resulting DITA documents from the Word conversion using the Batch Documents Converter add-on.</description>
 <script type="XSLT" href="batch-converter-post-processing.xsl"/>
</refactoringOperationDescriptor>

 	Copy these two files to a folder scanned by Oxygen XML Editor when it loads the custom
 operation.

 	Apply the new custom operation named "Post-processing Batch Documents
 Converter" that can now be found in the list of refactoring operations from the "XML
 Refactoring" dialog box.

 How can I configure the styles mapping for paragraphs styled as code
 blocks?

 In Word, a code block is represented as a sequence of paragraphs styled with a custom
 style that adds a custom font and border, like this:
[image: ../../images/wordCodeblock.PNG]
 To add a mapping for this custom style, follow
 these steps:

 	Open the Options → Preferences → Plugins → Batch Documents
 Converter preferences page in Oxygen.

 	Add a new row to the Word styles mapping table.

 	Enter "p" in the Word element cell, and enter "Code
 Snippet" in the Word style cell to match the paragraphs
 styled with "Code Snippet".

 	Enter "pre:separator('\n')" in the HTML elements cell.
 The <pre> element is the corresponding HTML element for these
 types of paragraphs. Since we want to merge these sequences of "Code Snippet" style
 paragraphs, the ":fresh" marker was not used. The ":separator('')" syntax
 configures a separator when the same type of consecutive paragraphs are merged. If
 it
 isn't specified, we would obtain a <pre> element with a single
 line of text.

 Using this configuration, a <pre> element is the result in
 the converted DITA output for every code block sequence. For obtaining
 <codeblock> elements in DITA, see How can I configure the styles mapping when the wanted element doesn't exist in HTML? for setting a class attribute on the resulting <pre> HTML
 element (by setting "pre.codeblock:separator('\n')" in the HTML
 elements cell) and creating a custom refactoring operation.

 How can I preserve the Word shapes?

 The converter doesn't support the Word shapes and these will be ignored when the
 document is converted to HTML or DITA. A workaround is to save them manually as SVG
 images
 in MS Word before the conversion. For this, you should follow these steps for every
 shape
 inside the document:

 	Select the shape.

 	Invoke the Cut action from the contextual menu.

 	Invoke the Paste Special... action from the Home > Paste menu.

 	In the resulting dialog box, select Picture (SVG) and
 OK.

 After completing these steps, the document will contain "SVG" images that will be
 preserved in the HTML or DITA results.

 Batch converting HTML to XHTML

 Suppose you have a bunch of possibly "not-wellformed" HTML documents already
 created and you want to process them using XSLT. For example, you may want to migrate
 the HTML documents to DITA using the predefined XHTML to DITA Topic
 transformation scenario available in Oxygen. So you need to create valid XML wellformed
 XHTML documents from the existing HTML documents and you need to do this in a
 batch processing automated fashion.

 There are lots of open source projects that deliver processors that can convert
 HTML to its wellformed XHTML equivalent. For this blog post, we'll use HTML Tidy. Here are
 some steps to automate this process:

 	Create a new folder on your hard drive (for example, I created one on my Desktop:
 C:\Users\radu_coravu\Desktop\tidy).

 	Download the HTML Tidy executable specific for your platform (http://binaries.html-tidy.org/) and place it in
 the folder you created in step 1.

 	In that same folder, create an ANT build file called build.xml
 with the following content:

 <project basedir="." name="TidyUpHTMLtoXHTML" default="main">
 <basename property="filename" file="${filePath}"/>
 <target name="main">
 <exec command="tidy.exe -o ${output.dir}/${filename} ${filePath}"/>
 </target>
</project>

 	In the Oxygen Project view, link the entire folder where the original HTML
 documents are located.

 	Right-click the folder, choose Transform->Configure Transformation Scenarios...
 and create a new transformation scenario of the type: ANT Scenario. Modify the
 following properties in the transformation scenario:

 	Change the scenario name to something relevant, like HTML to XHTML.

 	Change the Working Directory to point to the folder where the ANT build file
 is located (in my case: C:\Users\radu_coravu\Desktop\tidy).

 	Change the Build file to point to your custom build.xml (in my case:
 C:\Users\radu_coravu\Desktop\tidy\build.xml).

 	In the Parameters tab, add a parameter called filePath with the value
 ${cf} and a parameter called output.dir with the value of the path to
 the output folder where the equivalent XHTML files will be stored (in my case, I set
 it to: C:\Users\radu_coravu\Desktop\testOutputXHTML).

 	Apply the new transformation scenario on the entire folder that contains the HTML
 documents. When it finishes, in the output folder you will find the XHTML equivalents
 of
 the original HTML files (XHTML documents that can later be processed using XML
 technologies such as XSLT or XQuery).

 Migrating Unstructured Adobe FrameMaker Content to DITA

 This article explores ways to convert unstructured FrameMaker documents to a DITA
 XML
 project.

 Using a FrameMaker Plugin

 There is a FrameMaker plugin that can be used for this type of conversion: http://leximation.com/tools/info/fm2dita.php.

 Using FrameMaker Conversion Table

 FrameMaker has a "Conversion Table" feature that can be used for this type of
 conversion: https://help.adobe.com/en_US/framemaker/using/using-framemaker/user-guide/WSB3FD6CD7-6930-474f-BB1E-64762D105DB6_ver12.0.html.

 Unstructured FrameMaker to HTML to DITA

 To perform this migration, your documents must be in the ".mif" format.

 If your documents are in the '.fm' format, you can use the MIF Wash
 Utility to convert your book into a .mif document: https://helpx.adobe.com/framemaker/kb/how-to-use-mifwash-utility-in-framemaker.html.

 The 'mif' document must go through the following conversion and correction
 steps to obtain DITA content:

 	Publish Your Unstructured FrameMaker to HTML

 	

 In this step, the mif document is converted to HTML using the
 Basic HTML scenario from FrameMaker. Here
 are the substeps:

 	Create a settings file for publishing that contains mappings
 to HTML elements for all paragraph and character
 styles:
[image: ../images/mapping.png]

 It's very important to have mappings to HTML heading
 elements for paragraph styles that mark headings in your
 document. In the example above, the "Chapter",
 "Heading", and "Title" styles are
 mapped to the "h1" element, the "Subtitle" and
 "Section" styles to the 'h2' element, and the
 "Subsection" style to the 'h3' element.

 The styles
 set on the list should be mapped to the 'li' elements.
 In the example, it's the "Bullet", "Step", and "Step1"
 styles.

 The paragraph styles without mapping are
 converted to HTML paragraphs, so you can skip the ones
 where the mapping is not necessary. The "Body",
 "CellBody", and "CellHeading" styles don't have a
 mapping in the example above.

 	Publish the 'mif' document to HTML using
 Basic HTML:
[image: ../images/publish.png]

 This should result in an '.htm' document located in the output
 directory:

[image: ../images/htmlOutput.PNG]

 	Correct the Resulting HTML Using a Custom Refactoring Operation

 	The HTML document that results from publishing requires some extra
 processing before applying the DITA conversion.

 	For this, do the following:

 	Download the content from the following GitHub repository: https://github.com/oxygenxml/dita-refactoring-examples.

 	Copy the correctHtmlFromMif.xml and
 correctHtmlFromMif.xsl files from the
 "43. FM conversion fixes" directory in one of the locations that
 Oxygen scans when loading the custom refactoring operations:
 https://www.oxygenxml.com/doc/ug-editor/topics/sharing-custom-refactoring-operations.html.

 	Restart Oxygen.

 	Add the output directory that contains the HTML file to your
 project.

 	In the Project view, right-click the HTML file, and invoke the
 Refactoring> XML
 Refactoring action.

 	In the resulting dialog box, search for the operation named
 Correct HTML resulting from 'mif' and apply it to the
 HTML document.

 The applied refactoring operation corrects two problems in the
 HTML document:

 	The list items without a parent element ('ol' or 'ul').

 	Targets of the cross references that have the "name"
 attributes from anchor elements instead of the "id"
 attributes.

 	Convert HTML to DITA Using the Oxygen Batch Documents Converter
 Add-on

 	The Batch Documents Converter add-on has to be installed in Oxygen for
 this step. Follow the installation procedure here.

 	Before converting the document, you should configure which headings are
 handled as topics or sections. For this, use the Maximum Heading Level for
 Creating Topics options from the add-on's
 preferences page.

 	For converting the document, do the following:

 	Right-click the HTML document in the Project view and invoke the
 "HTML to DITA" option from the Batch Documents Converter
 submenu.

 	In the resulting dialog box, make sure that the
 Ignore HTML 'div' elements option is
 selected (because this element is not useful in the output) and
 that the Create DITA maps from HTML documents
 containing multiple headings option is also
 selected:
[image: ../images/conversionDialog.PNG]

 	Click the Convert button.

 The resulting DITA map preserves the structure of the document, images, tables, and
 internal and external links:
[image: ../images/output.PNG]

 Note that migration from proprietary formats to XML is never perfect and manual
 changes need to be made. The names of the original styles are preserved on the
 @ouputclass attributes and these can be used for adding extra
 processing using refactoring operations.

 Adobe and FrameMaker are either registered trademarks or trademarks of Adobe in the
 United States and/or other countries.

 Automation - Using DITA XML Topic Titles to Generate File Names

 When you create a new DITA topic in Oxygen XML Editor, you can usually specify the
 title of the topic and that title is used by the application to propose a file name.
 For
 example, for a topic title like WebHelp Output, the file name
 could be webhelp_output.dita.

 In general, I think having file names that match the topic titles seems like a best
 practice technique to identify each topic based solely on the file name. However,
 there
 are cases where the file names do not match the topic or map titles and for such cases,
 I created a free-to-use Python script to update the file
 names of all topics and maps based on the titles specified inside them. The script
 should also update any link or conref references to reflect the file name changes
 it
 makes.

 I think this script that updates file names based on titles for an entire DITA XML
 project could be useful in these cases:

 	There are content management systems (CMSs) that use unique IDs as file names
 (for example, abc434243243.xml). When such projects are
 exported from the CMS, the file names look quite ugly on disk and also when
 publishing the projects to HTML-based outputs, you might get links to HTML files
 like abc434243243.html, which are ugly and hard to
 remember.

 	In time, from one version of the user's guide to another, the titles of certain
 topics may change and having a way to update the file names based on titles in
 the entire project may be useful.

 	Sometimes after migrating another file format like Microsoft Word to a DITA Map
 using the Oxygen Batch Documents Converter add-on, you
 may want to make sure the topic file names reflect their titles.

 Below, you can leave feedback or comments about such a practice or about using the
 script
 for your project.

 SDK Development (Plugins, Frameworks)

 Oxygen XML Editor provides various ways to customize the application either by adding
 frameworks to customize editing for a certain XML vocabulary or by creating plugins.

 	Customizing Oxygen XML Editor (Overview)

 	Document Type Extension Sharing

 	Sharing Schematron Validation Rules

 	Public hosted Oxygen Plugin and Framework Projects

 	Sharing New Custom File Templates for a Specific Vocabulary

 	Composing Author Actions

 	Implementing a Custom Author Action to Split a Table

 	Adding a Custom Author Action to the Content Completion Window

 	How Special Paste works in Oxygen

 	The Oxygen SDK (Part 1: Plugins)

 	The Oxygen SDK (Part 2: Frameworks)

 	Your First Oxygen Add-on

 	Oxygen Add-ons Overview

 	Adding CALS-table related functionality to your custom Oxygen framework

 	Convert Code Templates to External Author Actions

 Describes how to bring code templates into a framework as author actions.

 Customizing Oxygen XML Editor (Overview)

 Let's assume you just bought Oxygen and want to customize it in order to better suit
 your
 team's workflow or to add support for your custom XML vocabulary. I will attempt to
 provide a
 set of use cases along with indications and useful links about what customization
 should be
 done in order to cover each use case:

 Add support for editing a specific XML vocabulary

 This kind of support usually should include:

 	New file templates.

 	Validate opened XML documents according to a custom schema.

 	Provide custom CSS to be used in the Author visual editing mode.

 	Provide custom toolbar, menu, and contextual menu actions to be used in the
 Author visual editing mode.

 Such support is done using a document type/framework configuration: The Oxygen SDK (Part 2: Frameworks).

 Customize the existing support for a specific XML vocabulary

 Oxygen comes with pre-configured framework configurations for the most commonly used
 XML standards such as DITA, Docbook, TEI, or XHTML. You may want
 to customize the existing configuration for one of these vocabularies and share the
 customization with others. Such customizations may include:

 	Provide custom file templates: Sharing New Custom File Templates for a Specific Vocabulary.

 	Provide a custom CSS layer: Customizing the DITA Visual Editing Experience.

 	Provide custom Schematron validation rules: Sharing Schematron Validation Rules.

 	Provide custom actions or modify the existing actions.

 All of these customizations can be done by extending the existing framework
 configuration and then sharing the extension: Document Type Extension Sharing.

 Provide custom settings

 You may want to provide all members of the team with a fixed set of options: Sharing Application Settings.

 Modify the application appearance or behavior using plugins

 Oxygen plugins can be used to:

 	Contribute custom views and toolbars for the entire application.

 	Filter out existing views or toolbar actions.

 	Contribute a fixed set of options/settings to the application.

 	Register various listeners and be notified when a document is opened, closed, saved,
 and so on.

 	Use the existing API to make changes to the opened documents.

 A more detailed overview of Oxygen plugins can be found here: The Oxygen SDK (Part 1: Plugins).

 The most popular plugin extension is the Workspace Access plugin extension: https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html. This extension is notified when the application starts
 and can contribute custom views, custom main menu items, custom main toolbar actions,
 or add
 listeners for various document-related changes.

 There is also a JavaScript-based workspace access plugin extension that can use JavaScript
 to call our Java API: https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin-js.html.

 A set of sample plugins built with the JavaScript-based extension can be found here:
 https://github.com/oxygenxml/wsaccess-javascript-sample-plugins.

 Our Maven-based SDK can be used to develop both plugins and framework Java customizations:
 https://www.oxygenxml.com/oxygen_sdk_maven.html.

 Document Type Extension Sharing

 Instead of copying an entire framework configuration folder (like DITA or
 Docbook), then modifying and distributing it, you can choose to extend that framework
 and distribute the extension. This way, you benefit from new functionality added to
 the base
 framework by newer Oxygen versions and you can still use your customizations.

 The steps below describe how to construct and share an extension of the DITA framework
 that removes certain elements from the content completion list:

 	Somewhere on your local disk (in a place where you have full write access), create
 a
 folder structure like: custom_frameworks/dita-extension.

 	In the Document Type Association / Locations preferences page, add the path to
 your custom_frameworks folder in the Additional frameworks
 directories list. Click OK or Apply to save your changes.

 	In the Document Type Association preferences page, select the DITA
 document type configuration and use the Extend button to create an extension for
 it.

 	Give the extension a custom name (for example, DITA - Custom), then change its
 Storage to external, and save it to a path like:
 path/to/.../custom_frameworks/dita-extension/dita-extension.framework.

 	Make changes to the extension (for example, go to the Author->Content completion
 tab and add elements that should not be presented to the end users in the Filter -
 Remove content completion items list).

 	Click OK to close the dialog box and then either OK or Apply to
 save the preferences changes.

 After you perform the steps above, in the dita-extension folder you will
 have a fully functioning framework that can be shared with others.

 The framework can be shared with others in several ways:

 	Copy it to their [OXYGEN_DIR]/frameworks directory.

 	Somewhere on the local disk, create a custom_frameworks folder,
 copy the framework there, and then in the Document Type Association / Locations
 preferences page, add the path to your custom_frameworks folder in
 the Additional frameworks directories list.

 	
 Distribute the framework along with a project by following these steps:

 	On your local drive, create a directory with full write access that contains the
 project files and a custom_frameworks folder that contains your
 dita-extension.

 	Start the application, go to the Project view, and create a project.
 Save it in the newly created directory.

 	In the Document Type Association / Locations preferences page, select
 Project Options at the bottom of the page.

 	In the Additional frameworks directories list, add an entry like:
 ${pd}/custom_frameworks.

 	Add other resources to your project (for example, you can have all of your DITA
 content located inside the project folder).

 	You can then share the new project directory with other users. For example, you
 can commit it to your version control system and have them update their working
 copy. When they open the customized project file in the Project view, the new document type
 becomes available in the list of Document Types.

 	Deploy the framework/document type configuration as an add-on.

 After your team members install the framework, they can check in the Document Type
 Association preferences page (in the list of Document Types) to see if the framework is
 present and if it appears before the bundled DITA framework (meaning that it has higher
 priority).

 Sharing Schematron Validation Rules

 Custom Schematron rules are a great way to ensure consistency for the edited XML
 structure, especially when there is a large team working on the same set of documents.
 You can
 use Schematron for numerous use cases. For example, to make sure that certain elements
 are not used at all, to impose restrictions on the amount of text for an element,
 or to impose
 restrictions on certain elements based on various attribute values or text content
 set in
 other elements. Furthermore, you can define quick fixes for each Schematron rule to
 give the technical writer proposed solutions for the reported problem. In a previous
 blog
 post, I described how we use Schematron rules for our Oxygen User's Manual to
 impose restrictions when editing DITA content: Schematron Checks to help Technical Writing.

 Once you define the Schematron rules, they can be shared with the other members of
 your team via a document type framework configuration: The Oxygen SDK (Part 2: Frameworks).

 In this post, I'm going to provide some precise steps to share a set of Schematron
 rules with a DITA framework extension.

 Instead of making changes directly to the DITA framework configuration folder
 (located in OXYGEN_INSTALL_DIR\frameworks\dita) and distributing it, you can choose to
 extend the DITA framework and distribute the extension. This way, you will benefit from
 new functionality added to the base framework in newer versions of Oxygen and you can
 still use your customizations.

 The following steps describe how you can extend a DITA framework that contains an
 additional Schematron rules file:

 	Create a folder structure (for example, custom_frameworks/dita-extension)
 somewhere on your local disk, in a place where you have full write access.

 	In that new folder structure, create another folder
 (custom_frameworks/dita-extension/rules) that will contain all of your custom
 Schematron files.

 	Create a new ISO Schematron file (for example, additionalRules.sch)
 that contains the additional rules you want to impose. For example, the following
 Schematron rule reports an error if the @scale attribute is used on an
 image:
 <schema xmlns="http://purl.oclc.org/dsdl/schematron" queryBinding="xslt2"
 xmlns:sqf="http://www.schematron-quickfix.com/validator/process">
 <pattern>
 <rule context="*[contains(@class, ' topic/image ')]">
 <assert test="not(@scale)">
 Dynamically scaled images are not properly displayed, you
 should scale the image with an image tool and keep it within
 the recommended width and height limits.
 </assert>
 </rule>
 </pattern>
</schema>

 	In the Document Type Association / Locations preferences page, add the path
 to your custom_frameworks folder in the Additional frameworks
 directories list. Click OK or Apply in the Preferences
 dialog to save your changes.

 	In the Document Type Association preferences page, select the DITA
 document type configuration and use the Extend button to create an extension for
 it.

 	Give the extension a custom name (for example, DITA - Custom), then change
 its Storage option to External, and then save it to a path such as:
 path/to/.../custom_frameworks/dita-extension/dita-extension.framework.

 	Make whatever changes you desire to the extension, go to the Validation tab,
 edit the default DITA validation scenario, and add an extra validation stage to it (a
 stage that uses your custom Schematron schema). More details about validation
 scenarios can be found here: https://www.oxygenxml.com/doc/ug-editor/topics/dg-validation-scenarios.html.

 	Click OK to close the dialog box and then either OK or Apply to
 save the preferences changes.

 After you perform the steps above, in the dita-extension folder you will have a
 fully functioning framework extension that can be shared with others.

 There are several methods for sharing the framework and you can read about them here:
 https://www.oxygenxml.com/doc/ug-editor/topics/author-document-type-extension-sharing.html.

 After your team members install the framework, they can check the Document Type
 Association preferences page to make sure the framework is present in the list of
 Document Types and that it appears before the bundled DITA framework (meaning
 that it has higher priority).

 You can use the framework extension mechanism to customize numerous aspects of the
 DITA functionality in Oxygen. For example, you can remove various elements from the
 content completion list: Document Type Extension Sharing. Or you can
 distribute custom new file templates: Sharing New Custom File Templates for a Specific Vocabulary.

 Public hosted Oxygen Plugin and Framework Projects

 All resources, Frameworks and Plugins which we make publicly available to contributors
 can be
 found on the oxygenxml GitHub group:https://github.com/oxygenxml/:

 	

 Plugins: https://github.com/search?q=topic:oxygen-standalone-plugin+org:oxygenxml&type=Repositories

 Examples:

 	Workspace containing sample Oxygen plugins implemented in Javascript: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins.

 	Frameworks: https://github.com/search?q=topic:oxygen-framework+org:oxygenxml&type=Repositories.
 Examples:

 	Framework which adds Daisy support in Oxygen: https://github.com/oxygenxml/Daisy

 	Framework which adds STRATML support to Oxygen: https://github.com/oxygenxml/stratml

 	S1000D Framework which adds some limited support to edit S1000D
 documents in the Author visual editing mode:https://github.com/oxygenxml/S1000D

 Besides, there are interesting Oxygen plugins and frameworks which are developed as
 separate public projects and maintained by third parties (either users or companies).
 I will
 try to compile a list below:

 	Project Argon by German company Axxepta provides a plugin which can connect Oxygen to a BaseX
 server: https://github.com/axxepta/project-argon. The integration also provides CMS-like capabilities for searching and version control.
 The plugin is available as an add-on: http://argon-author.com/.

 	LanguageTool plugin for Oxygen: https://github.com/danielnaber/oxygen-languagetool-plugin

 	The latest version of XSpec framework is available as an external framework or an
 add-on. See XSpec Wiki for more details.

 	You can define terminology terms and then create Schematron rules for them using the
 Doctales terminology checker Oxygen framework: https://github.com/doctales/org.doctales.terminology.

 	Framework which adds JATS/NLM support for Oxygen developed by Wendell Piez: https://github.com/wendellpiez/oXygenJATSframework.

 	Framework for validating XSL-FO with Antenna House extensions developed by
 Antenna House: https://github.com/AntennaHouse/focheck.

 	Fork of the JATS framework which adds Schematron checks and Literatum package
 building: https://github.com/le-tex/oXygenJATSframework_Literatum

 	Three open-source frameworks for editing ATA-2300, S1000D and RIF XML documents in
 Oxygen
 developed by Amplexor: https://github.com/Amplexor.

 	Besides being bundled with Oxygen the TEI framework is also available as a
 project partly maintained by the TEI community: https://code.google.com/p/oxygen-tei/

 	

 HisTEI: An Oxygen framework for historical documents encoded in TEI.

 More details: https://github.com/odaata/HisTEI, https://www.oxygenxml.com/pipermail/oxygen-sdk/2014-November/000182.html

 	oXbytei is an oXygen framework for editing TEI, that is configured by TEI's header. It offers high-level
 functions that facilitate everyday work on TEI documents. More details: https://github.com/SCDH/oxbytei#an-oxygen-framework-configured-by-tei

 	

 Ediarium is an extension package for TEI editing within Oxygen.

 More details:https://www.bbaw.de/en/bbaw-digital/telota/research-and-software/ediarum, https://github.com/telota/ediarum

 	TEI Facsimile Plugin offers a side view in which users can load an image and see the
 marked areas (all the zone elements from a TEI document), draw new areas over the
 image and copy them into the editor:https://github.com/oxygenxml/TEI-Facsimile-Plugin.

 	A Workspace Access Plugin for Oxygen XML Editor
 that creates TEI-conform UUIDs starting with a letter: https://github.com/digicademy/CustomUUID

 	TEI Authorizer is a plugin for Oxygen which lets you query remote authority files
 via HTTP
 and use retrieved data to autocomplete attribute values in your TEI documents and
 define and
 implement forms to fill out new data and post it to your server via HTTP:https://github.com/BCDH/TEI-Authorizer

 	Framework for editing UBL documents (UBL 2.1, 2.2 csd01 and 2.2 Pre-award csd02wd01pa01)
 developed by G. Ken Holman: https://cranesoftwrights.github.io/resources/ubl/#oxygenubl

 	Framework for validating OASIS genericode 1.0 documents developed by G. Ken Holman:
 https://cranesoftwrights.github.io/resources/ubl/#oxygengc.

 	Automatic builder for Oxygen frameworks which allows user to describe framework's
 behaviour by using only XQuery, HTML, and CSS, and automatically
 generate the framework archive ready to be deployed (developed by Claudius Teodorescu):https://github.com/claudius108/oxygen-addon-builder-plugin

 	Plugin developed by Clausius Teodorescu which allows opening a JavaFX-based web browser
 in
 Oxygen: https://github.com/claudius108/oxygen-webview-plugin.

 	OpenDocs Plugin allows you to focus on specific file types opened in the editor in
 order to perform various actions on them. GitHub repository: https://github.com/nkutsche/opendocs/.

 	XsltGui Project by Patrik Stellmann is an example of how you can show dialogs to
 the end users from an XSLT script: https://github.com/dita-semia/XsltGui.

 	Plugin developed by pagina GMBH which expands a custom editor variable called
 ${clipboard} to the clipboard contents: https://github.com/paginagmbh/oxygen-plugin_clipboard-editor-variable.

 	The NameDropper Oxygen plugin can be used to simplify the process of tagging names
 in XML and associating those names with authoritative identifiers:https://github.com/emory-libraries-ecds/namedropper-oxygen.

 	Sample Oxygen plugin demo by Tobias Fisher: https://github.com/tofi86/oxygen_PluginDemo.

 If anyone else wants to add something else to the list, just drop us an email.

 Sharing New Custom File Templates for a Specific Vocabulary

 The support Oxygen provides for editing DITA topics comes with quite an
 extensive set of new file templates used to create new DITA topic types. If you have
 a team of
 writers, you may want to filter out certain new file templates or add your custom
 new file
 templates, then share these custom templates with your team members.

 This blog post will attempt to give you some clear steps for sharing a custom set
 of new file
 templates with your team.

 All the original DITA new topic templates are located in the folder:
 OXYGEN_INSTALL_DIR\frameworks\dita\templates.

 Instead of making changes directly to that folder, copying the entire DITA framework
 configuration folder (like OXYGEN_INSTALL_DIR\frameworks\dita), modifying
 and distributing it you can choose to extend the DITA framework and distribute the
 extension. In this way, you will benefit of new functionality added to the base framework
 by
 newer Oxygen versions and still use your customizations.

 The steps below describe how an extension of the DITA framework which adds a custom
 set of new file templates can be constructed and shared:

 	Create somewhere on your disk, in a place where you have full write access a folder
 structure like: custom_frameworks/dita-extension.

 	In that new folder structure create another folder
 custom_frameworks/dita-extension/templates which will contain all
 your custom new topic templates.

 	In the Document Type Association / Locations preferences page add
 in your Additional frameworks directories list the path to your
 custom_frameworks folder. Click OK or Apply in the
 Preferences dialog to save your changes.

 	In the Document Type Association preferences page select the
 DITA document type configuration and use the
 Extend button to create an extension for it.

 	Give a custom name to the extension, for example DITA - Custom
 and then change its Storage to external, then save it to a path
 like:
 path/to/.../custom_frameworks/dita-extension/dita-extension.framework.

 	Make changes to the extension, go to the Templates tab, remove all previous
 entries from it and add a new entry pointing to your custom templates folder:
 ${frameworkDir}/templates.

 	Click OK to close the dialog and then either
 OK or Apply to save the preferences
 changes.

 After you perform the steps above you will have in the dita-extension
 folder a fully functioning framework extension which can be shared with others.

 The framework can then be shared with others in several ways:

 	Copy it to their [OXYGEN_DIR]/frameworks directory.

 	Create somewhere on disk a custom_frameworks folder, copy the
 framework there and then from the Document Type Association /
 Locations preferences page add in your Additional frameworks
 directories list the path to the custom_frameworks
 folder.

 	

 Distribute the framework along with a project.

 Follow these steps:

 	On your local drive, create a directory with full write access, containing the
 project files and a custom_frameworks folder containing your
 dita-extension framework.

 	Start the application, go to the Project view and
 create a project. Save it in the newly created directory.

 	In the Document Type Association / Locations preferences
 page, select Project Options at the bottom of the page.

 	Add in the additional framework directories list an entry like
 ${pd}/custom_frameworks.

 	Add other resources to your project, for example you can have all your DITA
 content located inside the project folder.

 	You can then share the new project directory with other users. For example you can
 commit it to your version control system and have they update their working copy.
 When they open the customized project file in the Project view, the new
 document type becomes available in the list of Document Types.

 	

 Deploy the framework/document type configuration as an add-on.

 After your team members install the framework they can check in Document Type
 Association preferences page in the list of Document Types to see if the
 framework is present and if it appears before the bundled DITA
 framework (meaning that it has higher priority).

 You can use the framework extension mechanism to customize lots of aspects of the
 DITA
 functionality in Oxygen. For example you can remove various elements from the content
 completion list: Document Type Extension Sharing.

 Composing Author Actions

 Suppose that each time you insert a DITA table in the Author visual editing
 mode, you want to always have the attributes colsep="1" rowsep="1"
 frame="all" set on it. The purpose of this post is to create a new
 DITA-specific action for inserting a table that invokes the current table insertion
 action and then forces those three attributes to be set on the table element. Here are
 some steps to accomplish this:

 	

 Follow the steps listed in this older blog post to create an extension of the
 DITA framework: Customizing the DITA Visual Editing Experience.

 	

 In the Document Type Association preferences page, edit the DITA
 framework extension you just created. Go to the Author->Actions tab and create a
 new action with the ID change.table.colsep. Use the predefined ChangeAttributeOperation to set the
 (colsep="1" attribute) on the closest table element. The custom action would look
 like
 this:

 [image: ../images/tbl-change-colsep.png]

 	

 Based on the same idea, create two more new actions called "change.table.rowsep"
 and "change.table.frame" that will set the rowsep="1" and
 frame="all" attributes on the closest table, respectively.

 	

 Create a new action with the ID insert.table.fixed.attributes and use the
 predefined ExecuteMultipleActionsOperation to call 4
 actions in a row, the original insert.table action ID that inserts the table,
 followed by the three action IDs that set various attribute values to the inserted
 table.

 [image: ../images/tbl-new-table-action.png]

 	

 Go to the Author->Toolbar tab and in the "Current actions" panel, remove
 the current "insert.table" action and replace it with the
 insert.table.fixed.attributes action ID.

 	

 When editing a DITA topic, pressing the toolbar action for inserting a table should
 now
 call your custom action that sets those three attributes on the inserted table.

 Implementing a Custom Author Action to Split a Table

 Let's say you are editing XML documents belonging to a certain vocabulary (like
 DITA) for which there is a framework configuration available. The purpose of this
 post is to create a new custom Author action for splitting the current edited table
 in two
 based on the table row in which the cursor is located. The custom action will use
 Javascript
 to call Oxygen's API and accomplish this. Here are some steps to follow:

 	

 Follow the steps 1,3, 4 and 5 listed in this older blog post to create an extension
 of
 the DITA framework: Customizing the DITA Visual Editing Experience.

 	

 In the Document Type Association preferences page, edit the DITA
 framework extension you just created. Go to the Author->Actions tab and create a
 new action with the ID split.table. Use the predefined JSOperation to invoke a custom Javascript
 code. The custom action definition would look like this:

 [image: ../images/splitTableCustomAction.png]

 	Set as value to the script parameter of the operation the following
 Javascript
 code:
 function doOperation(){
 current = authorAccess.getDocumentController().getNodeAtOffset(authorAccess.getEditorAccess().getCaretOffset());
 tableNode = null;
 rowNode = null;
 while(current != null) {
 if(tableNode == null && ("table".equals(current.getName()) || "informaltable".equals(current.getName()))) {
 tableNode = current;
 }
 if(rowNode == null && ("row".equals(current.getName()) || "strow".equals(current.getName()))) {
 rowNode = current;
 }
 current = current.getParent();
 }
 if(tableNode != null && rowNode != null) {
 //Create a fragment starting from the row to the end of the table
 secondTable = authorAccess.getDocumentController().createDocumentFragment(rowNode.getStartOffset(), tableNode.getEndOffset());
 //Delete the content from the first table.
 authorAccess.getDocumentController().delete(rowNode.getStartOffset(), tableNode.getEndOffset() - 1);
 //Insert the second table.
 authorAccess.getDocumentController().insertFragment(tableNode.getEndOffset() + 1, secondTable);
 }
}

 	

 Go to the Author->Toolbar tab and use the Current actions panel to add
 the action with ID split.table to the toolbar.

 	

 When editing a DITA topic, pressing the toolbar action for splitting the table should
 now call your custom action and split the current table.

 	You can add keyboard shortcuts for all custom actions either when defining them or
 from
 the Oxygen main menu Preferences->Menu Shortcut Keys page.

 Adding a Custom Author Action to the Content Completion Window

 Let's say you are editing XML documents belonging to a certain vocabulary (like
 DITA) for which there is a framework configuration available. The content completion
 window appears in the Author visual editing mode when you press the
 ENTER key and usually presents the set of XML elements allowed at the
 caret position. The same list of elements is present in the Elements
 view. These elements are usually proposed based on the DTD, XML or Relax NG vocabulary
 used to
 validate the XML document.

 But there may be cases in which you want to customize the content completion items.
 There is
 a content completion configuration file which can be
 changed to allow for various use cases:

 	Disallow a certain set of elements to appear in the content completion window.

 	Declare a set of required child elements which should be inserted automatically when
 the
 parent element is inserted.

 	Declare a set of required attributes which should be inserted when a certain element
 is
 inserted.

 There are also a number of use cases not covered by the content completion filter
 file:

 	You want to add a new item in the content completion filter which triggers a complex
 action. For example when the item is selected you show a dialog and ask the end user
 from
 some data, then insert a custom XML fragment based on that data the end user filled
 out.

 	You want to replace an existing item in the content completion window with an item
 with
 the same name but which again triggers a more complex action.

 Further in the blog post we'll go through the steps necessary to replace an item from
 the
 content completion window with a complex action. As an example for the
 DITA vocabulary when the created item is
 selected in the content completion window we want the inserted XML content to contain
 the
 current date
 like:
 <created date="2020-03-26"/>

 Here are some steps to follow:

 	

 Follow the steps 1,3, 4 and 5 listed in this older blog post to create an extension
 of
 the DITA framework: Customizing the DITA Visual Editing Experience.

 	

 In the Document Type Association preferences page, edit the DITA
 framework extension you just created. Go to the Author->Actions tab and create a
 new action with the ID created.current.date. Use the predefined InsertFragmentOperation to insert a small
 XML fragment. The XML fragment uses an editor variable which will be expanded to the
 current date. There are plenty of other editor variables to choose from.

 The custom action definition would look like this:

 [image: ../images/customAuthorActionCreated.png]

 There are plenty of other pre-defined operations which can be used from an
 Author action. For example a Javascript-based operation, there are some other examples of what such
 operations can do in a separate GitHub project.

 	

 Go to the Author->Content Completion tab, find the new action in the
 Available Actions list and add it to the Current
 actions list. You will be able to add it both in the content completion list and
 the Elements view. In the Filter - Remove content
 completion items list add an entry for created because we
 want to remove the original item and replace it with the action.

 	Save all your changes by using the Ok button both in the document
 type configuration dialog and in the Preferences dialog.

 	

 When editing a DITA topic in the Author visual editing mode you
 can press ENTER to show the content completion window, choose
 created and your custom Author action will be called instead of the
 original item.

 How Special Paste works in Oxygen

 If you've worked with one of the XML vocabularies for which Oxygen has out of the box
 support like DITA, Docbook, TEI, XHTML you've probably already
 used the support Oxygen has for converting content pasted in the application from
 external
 applications like Microsoft Word, Excel or from any web browser. This is
 a very useful feature for converting various types of content to XML because it preserves
 and
 converts styling, links, lists, tables and image references.

 The feature relies on the fact that when copying content in the applications mentioned
 above,
 they set in the clipboard the HTML equivalent of the copied content. So all Oxygen
 has to do
 is clean up that HTML, make it wellformed XHTML and apply conversion XSLT stylesheets
 over
 it.

 This support is not hardcoded and anybody who is developing an Oxygen framework customization for a certain XML vocabulary can
 provide conversion stylesheets for external pasted HTML content.

 I will describe how this works for the DITA framework and you can do the same for
 yours. You can also use this information to modify the way in which smart paste works
 for the
 bundled framework configurations.

 	In the Preferences->Document Type Association page you can choose
 to edit (or extend) the DITA document type association.

 	In the Extensions tab the Extensions bundle implementation is set to
 DITAExtensionsBundle which resides in the DITA Java extensions archive
 dita.jar.

 	The DITAExtensionsBundle is an extension of the ExtensionsBundle API and it provides its
 own external object extension
 handler:
 /**
 * @see ro.sync.ecss.extensions.api.ExtensionsBundle#createExternalObjectInsertionHandler()
 */
 @Override
 public AuthorExternalObjectInsertionHandler createExternalObjectInsertionHandler() {
 return new DITAExternalObjectInsertionHandler();
 }

 	The DITAExternalObjectInsertionHandler extends the base class AuthorExternalObjectInsertionHandler and
 provides a reference to its specific conversion
 stylesheet:
 /**
 * @see ro.sync.ecss.extensions.api.AuthorExternalObjectInsertionHandler#getImporterStylesheetFileName(ro.sync.ecss.extensions.api.AuthorAccess)
 */
 @Override
 protected String getImporterStylesheetFileName(AuthorAccess authorAccess) {
 return "xhtml2ditaDriver.xsl";
 }

 Note: The
 Extensions tab also allows you to specify the external object insertion handler
 as a separate extension.

 	In the same Document Type edit dialog in the Classpath tab you will see
 that there is a reference to a framework-specific resources folder
 like:${framework}/resources/

 	If you look on disk in the DITA framework resources folder:
 "OXYGEN_INSTALL_DIR\frameworks\dita\resources" you will find the
 xhtml2ditaDriver.xsl stylesheet there. The stylesheet imports various other
 stylesheets which you could probably fully reuse and which apply various cleanups
 on HTML
 produced with MS Word. It also handles the conversion between the pasted HTML content
 and
 DITA so it is a good starting point, you can copy the entire set of XSLT stylesheets
 to
 your framework and use those as a starting point.

 The Oxygen SDK (Part 1: Plugins)

 During the last years we added a lot of API and extension points to Oxygen in
 order to allow for different customizations to the application. But our documentation
 is
 sometimes lacking. We mostly rely on Javadoc documentation and on Java
 samples. Here's some feedback we got at the last Oxygen Users Meetup in
 Munich this year:

 Too less information about frameworks, plugins,
 everything is spread over certain documents, webinars, etc . Please centralize
 these information in one form.

 I will try to centralize these resources
 and add some useful links for people who want to start customizing Oxygen. First the
 difference between a framework and a plugin:

 	A plugin can be used to customize the behavior of the entire application
 no matter what XML document is currently being edited.

 	A framework configuration provides validation, content completion and
 editing support for a specific XML vocabulary.

 Plugins:

 A plugin is a folder containing a descriptor plugin.xml file and various
 other JAR libraries and resources.http://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/preferences-plugins.html

 Only the standalone version of Oxygen supports plugins. The Eclipse
 Plugin version of Oxygen is itself a plugin and can be customized by adding
 a plugin in the Eclipse workbench which depends on the Oxygen Eclipse plugin.
 Despite of this, most of the API is common.

 The plugin can be deployed either by copying it to the plugins folder of an
 Oxygen installation:https://www.oxygenxml.com/doc/ug-editor/topics/howto-install-plugins.html
 or by deploying it as an add-on:http://www.oxygenxml.com/doc/ug-oxygen/index.html#tasks/deploying-addons.html

 The Oxygen Plugins SDK:https://www.oxygenxml.com/oxygen_sdk.html#Developer_Plugins contains Java
 sources and Javadoc for all the API accessible from a plugin. The Plugins SDK also
 contains sample plugins and their Java code. This Java code should be very helpful
 to get you started and to show how various API can be used.

 Although there are many types of plugins:http://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/pluginTypes.html
 the most useful plugin extension type is the "Workspace Access" extension
 type:http://www.oxygenxml.com/doc/ug-oxygen/index.html#concepts/workspace-access-plugin.html
 This kind of plugin allows you to use the API and add or remove toolbar and main
 menu buttons, add custom views and toolbars. It also allows you to access and
 control/make changes to the XML documents opened in the workbench.

 As an example, all full-featured integrations which have been created to connect
 Oxygen with a specific CMS or remote repository use a combination of
 "Workspace Access" and "Custom Protocol" plugin:http://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/howto-cms-plugin.html

 You can create automated tests for your plugins:http://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/automated-tests.html
 and even debug their functionality:http://www.oxygenxml.com/doc/ug-oxygen/index.html?q=/doc/ug-oxygen/topics/debug-plugin.html

 The Oxygen SDK (Part 2: Frameworks)

 This is the second part of a blog post I started some time ago:

 The Oxygen SDK (Part 1: Plugins).

 There are two ways of customizing the application, by implementing a plugin or by
 implementing a framework:

 https://www.oxygenxml.com/doc/ug-editor/topics/api_faq_plugin_framework_difference.html

 A framework configuration provides validation, content completion and editing support
 for a certain XML vocabulary.

 If you are already using Oxygen for editing DITA, Docbook, XHTML or
 TEI documents you may notice that Oxygen knows how to validate these
 vocabularies and that it can propose content completion entries while you are editing.
 Also
 when you are editing in the Author visual editing mode you have lots of custom
 vocabulary-specific toolbar buttons which can be used to insert links, images, to
 manipulate
 tables and so on. This happens because each Oxygen installation comes with pre-bundled
 framework configurations for certain XML vocabularies that we consider to be more
 important
 for our users.

 Knowing how to create and modify a framework/document type association configuration
 will
 benefit you in two ways:

 	Create your own framework which adds editing support to Oxygen for certain specific
 XML
 vocabularies and then distribute it to your team.

 	Customize an existing framework bundled with the installation (DITA, Docbook, etc)
 and
 change certain behaviors in it.

 Our user manual contains a special step by step tutorial which explains how a new
 framework
 configuration (document type association) can be created and configured:

 https://www.oxygenxml.com/doc/ug-editor/topics/authoring_customization.html

 The Oxygen Preferences->Document Type Association page lists all detected frameworks
 (document type associations). Usually looking inside one of the pre-configured document
 type
 associations (eg: DITA) is a good place to start exploring what such a customization
 contains:

 	Association rules - when one of these rules
 matches the opened XML document, Oxygen will associate it with the current document
 type
 association. The rules are pretty simple to compose, they refer to a certain root
 name,
 namespace, certain attributes set on the root and so on.

 	Schema - specifies a grammar to be used to providing validation and content
 completion if the opened XML document does not refer directly to any particular
 gramar.

 	Classpath - a list of JAR libraries which contain Java extensions for this
 specific framework.

 	Author - contains all necessary support for
 editing the XML in the Author visual editing mode:

 	CSS - one or more CSS files to be used
 when rendering the XML. If you define alternate CSSs, you will be able to switch
 between them when editing. The user manual contains a list of supported CSS features
 and additional
 available extensions.

 	Actions - a list of actions specific
 for modifying the edited content. An action has a name, description, icons and
 shortcut key. It also has one or more activation contexts which depending on an XPath
 expression enable a certain operation be executed. A fair amount of basic
 operations are already available but you can create your custom operations.

 	Menu, Contextual menu and Toolbar - you can easily mount
 defined actions to the main document type menu, to the contextual menu or to the
 special Author toolbar(s).

 	Content Completion - add defined
 actions to the content completion window (shown when ENTER is pressed in the Author
 editor mode) or remove existing entries from the content completion window. You can
 for example replace some of the insert suggestions given by the association grammar
 with your own custom actions.

 	Templates - points to folders which contain
 new file templates for this particular framework. These new file templates will be
 shown
 in the New wizard dialog.

 	Catalogs contains a list of XML catalogs
 which will be used to indirectly solve various references (like references to schemas
 or
 other XML documents).

 	Transformation may contains a predefined
 list of transformation scenarios which are available when you want to publish your
 opened
 XML document to various output formats.

 	Validation may contain a predefined list of
 validation scenarios which are used to add complex multi-stage validation (with multiple
 engines) for the XML documents matching the document type association.

 	Extensions - contains implementations of
 the available Java extensions which are used to provide further functionality for
 editing
 in the Author visual editing mode. Here's what some of the extensions do:

 	AuthorExtensionStateListener - provides
 a way to be notified when the XML was opened in the Author editing mode. You can then
 add all kinds of listeners and react to edit events done by the user. For example
 add
 a modification listener, send the edited content to an external spell checker engine
 and then add highlights in the content on invalid constructs.

 	AuthorExternalObjectInsertionHandler -
 reacts to drag and drop and copy/paste events containing with HTML content or
 resources. In the case of DITA for example this handler is responsible of the
 automatic conversion of HTML pasted from the browser to DITA content.

 	SchemaManagerFilter - filter and modify
 the insertion items detected from the associated grammar when editing XML content.
 For
 example even if the schema proposes certain elements as valid insertions at the caret
 offset, you can filter out and restrict the suggestions given by the associated schema
 (grammar).

 	StylesFilter - take control over the
 rendering styles for each node by adding this layer of Java customization over the
 styles provided by the associated CSSs.

 	AuthorSchemaAwareEditingHandler -
 handle special editing cases and provide fallbacks which keep the document in a valid
 state. For example if the user starts typing text between two paragraphs, the handler
 can automatically create a new paragraph.

 You can create automated tests for your frameworks:

 http://www.oxygenxml.com/doc/ug-oxygen/index.html#topics/automated-tests.html

 and even debug their functionality:

 https://www.oxygenxml.com/doc/ug-editor/topics/debug-sdk.html

 Your First Oxygen Add-on

 A framework configuration provides validation, content
 completion, and visual editing support for a certain XML vocabulary.

 Existing framework configurations that come bundled with Oxygen can be extended and
 modified. For example, the DITA framework configuration that adds support for editing
 DITA documents can be modified to remove existing actions, add custom actions, or
 modify many other behaviors: Document Type Extension Sharing.

 One way of distributing framework configurations is by using Oxygen's add-on support:
 https://www.oxygenxml.com/addons.html. An
 add-on configuration is usually composed of only two files:

 	A ZIP file containing the zipped framework folder.

 	An add-on XML configuration file that references the zipped framework folder and defines
 various properties of the add-on. A small example can be seen
 below:
 <xt:extensions xmlns:xt="http://www.oxygenxml.com/ns/extension"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oxygenxml.com/ns/extension http://www.oxygenxml.com/ns/extension/extensions.xsd">
 <xt:extension id="dita-extension">
 <xt:location href="dita_extension.zip"/>
 <xt:version>1.0.0</xt:version>
 <xt:oxy_version>18.0+</xt:oxy_version>
 <xt:type>framework</xt:type>
 <xt:author>Radu Coravu</xt:author>
 <xt:name>DITA Extension which removes the bold action</xt:name>
 <xt:description xmlns="http://www.w3.org/1999/xhtml">
 This extension removes the bold action
 </xt:description>
 <xt:license>
<![CDATA[
Everybody's welcomed to use this
]]></xt:license>
 </xt:extension>
</xt:extensions>

 In
 the add-on descriptor file you usually need to specify the following :

 	The ID of the extension.

 	The version of the add-on.

 	The minimum supported Oxygen version.

 	Author name.

 	Name and description of add-on.

 	Licensing details.

 Changing the add-on version in the XML file will trigger notifications to the end
 user to
 install the new add-on. Therefore, you can modify the framework customization in a
 common
 location and change the add-on version to signal all end-users who have installed
 the add-on
 that a new version is available. More details about packing an add-on can be found
 here:https://www.oxygenxml.com/doc/ug-editor/topics/packing-and-deploying-addons.html#packing-and-deploying-addons.

 If you want to test the small add-on I exemplified, you can find the sample add-on
 resources
 here:https://www.oxygenxml.com/forum/files/sample-add-on.zip.

 Installing an add-on is straight-forward using the Install new add-ons dialog box from
 the Oxygen Help menu. You can add a reference to the add-on XML descriptor file
 that can reside either on the local hard drive or on a web server, and Oxygen will
 present all
 available add-ons: https://www.oxygenxml.com/doc/ug-editor/topics/installing-and-updating-add-ons.html

 The add-ons support can also be used to install Oxygen plugins. Some of the public hosted Oxygen plugins and
 frameworks are also available as add-ons: Public hosted Oxygen Plugin and Framework Projects.

 In conclusion, if you want to share Oxygen customizations with others, you should
 try the
 add-on approach, it is a better approach to manually distributing frameworks and plugins.

 Oxygen Add-ons Overview

 Oxygen XML Editor can be extended to support new functionalities and vocabularies.
 These extensions can be either plugins or frameworks: https://www.oxygenxml.com/doc/ug-editor/dev_guide/introduction-dev-guide.html.

 This blog post is intended as a small overview of Oxygen XML Editor add-ons,
 what they are, sample add-ons implemented by third parties, sample add-ons
 implemented by us and where we want to go from here.

 Short History of Frameworks Support in Oxygen XML Editor

 	The concept of framework appeared around Oxygen XML Editor
 version 9.
 A framework (or document type) is a means to
 group together resources for editing, rendering and
 validating a specific XML vocabulary: https://www.oxygenxml.com/doc/ug-editor/glossary/framework.html.

 	Originally frameworks could be manually installed by being
 copied to the
 OXYGEN_INSTALL_DIR\frameworks
 folder or by setting them up in the Preferences page.

 Around version 14 we added support to pack
 plugins and frameworks as add-ons and
 thus automate the installation process.

 	In version 16 we added support to extend a base framework. Such
 an extension can be afterwards be bundled as an add-on.

 	A sample framework extension add-on which adds custom visual
 display support can be found here: DITA Topics as
 Slides.

 Short History of Plugin Support in Oxygen XML Editor

 	The initial support for plugins was primitive, it allowed adding
 a contextual menu action in the Text editing mode for
 manipulating the selected content: https://www.oxygenxml.com/doc/ug-editor/topics/text-editing-mode-plugins.html.

 	In version 11.2 the Workspace Access plugin type was added:
 https://www.oxygenxml.com/doc/ug-editor/topics/workspace-access-plugin.html.
 Workspace Access
 plugins allow you to:

 	Add custom toolbar and menu actions.

 	Add custom side views.

 	Add various behaviors depending on various
 events which occur in the application:

 	Open, Save, Close documents.

 	Switch between document.

 	Open or close the application.

 Such plugins can be implemented either in Java
 or Javascript (since version 17.1).

 	Originally plugins could be manually installed by being copied
 to the OXYGEN_INSTALL_DIR\plugins.
 Around version 14 we added support to pack plugins and
 frameworks as add-ons and thus automate the installation
 process.

 Public Hosted Plugins and Frameworks

 There is an older blog post with an up to date list of Public hosted Oxygen Plugin and Framework Projects.

 Private Hosted Plugins and Frameworks

 Content Management Systems like Astoria, Bluestream, Ixiasoft, SDL have implemented
 plugins which allow Oxygen XML Editor to connect to their remote
 storage servers.

 There are also lots of privately used frameworks used for editing various varieties
 of XML documents inside companies.

 Why are we (the Oxygen XML Editor team) working on add-ons?

 	Open source add-ons are useful as samples for third
 parties.

 	We can work with external collaborators on add-ons.

 	Add-ons can be released at a much faster pace.

 	Interns who work for us for a couple of months can implement
 useful functionality without making changes to the
 application main code base.

 	We can work on add-ons before Oxygen XML Editor releases
 when we enter a code freeze stage.

 	We can use our own API and abandon the mindset of regarding the
 main application as a monolith.

 	Sincerely, working on add-ons is more FUN.

 Plugins and Frameworks Developed by Oxygen XML Editor

 Samples:

 	Sample Javascript-based plugins: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins.

 	Apply XSLT filter on open/save.

 	Add custom editor variable resolver.

 	Impose options.

 	Add custom image renderer for Author visual
 editing mode.

 	Add custom validation problems filter.

 	Sample Workspace-access plugin Maven based: https://github.com/oxygenxml/sample-plugin-workspace-access

 	User interface filter plugin: https://github.com/oxygenxml/oxygen-components-filter-plugin

 Useful add-ons with public sources:

 	Git support add-on: https://github.com/oxygenxml/oxygen-git-plugin

 	Batch Resources Convertor add-on: https://github.com/oxygenxml/oxygen-resources-converter

 	DocBook Validation add-on: https://github.com/oxygenxml/oxygen-docbook-validate-check-completeness

 	Add-on for connecting to any CMIS-enabled storage server
 (like Alfresco): https://github.com/oxygenxml/oxygen-cmis-plugin.

 	DITA-specific add-ons:

 	Translation helper: https://github.com/oxygenxml/oxygen-dita-translation-package-builder

 	Prolog updater: https://github.com/oxygenxml/oxygen-dita-prolog-updater

 	Outgoing References View: https://github.com/oxygenxml/oxygen-dita-outgoing-references-view

 	Support for rendering various image formats in the
 Author visual editing mode:

 	EMF: https://github.com/oxygenxml/oxygenxml.emf.support

 	CGM: https://github.com/oxygenxml/oxygenxml.cgm.support

 	PDF: https://github.com/oxygenxml/oxygen-pdf-image

 	LaTex: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/latex-images-support

 	PlantUML: https://github.com/oxygenxml/wsaccess-javascript-sample-plugins/tree/master/plantuml-images-support

 Useful add-ons with private repositories (can be installed from
 application default add-on update site):

 	Content Fusion Oxygen add-on - bundled with Oxygen.

 	WebHelp Feedback Oxygen add-on.

 	Emmet plugin for Oxygen.

 Using Frameworks and Plugins in the WebAuthor in-browser
 editor

 The WebAuthor in-browser editing tool reuses on the server most of the
 internal architecture of an Oxygen XML Editor standalone
 version:

 	The WebAuthor can
 use for editing XML vocabularies the same framework
 configurations used in Oxygen XML Editor: https://www.oxygenxml.com/doc/ug-waCustom/topics/customizing_frameworks.html

 	Plugins can be
 implemented to connect the WebAuthor to various
 servers.

 Where can we go from here?

 Possible future plugins we can work on:

 	Support for Google Drive (already available in
 WebAuthor)

 	Support for Perforce (already available in
 WebAuthor)

 	Use Grammarly for spell check (no API available on
 Grammarly side)

 	Presentation mode plugin (increase fonts, disable
 certain settings).

 	Context side view plugin using XPath with support for
 favorite expressions.

 	Plugin which highlights various characters or ­text
 fragments in the content.

 Possible new API enhancements:

 	Add support for a plugin to contribute a custom editing
 perspective (toolbars/views arrangement).

 Besides the possible enhancements listed below, we want your feedback. So
 are you using Oxygen add-ons? Are you developing such add-ons? What
 do you need from us to better support your use cases?

 Adding CALS-table related functionality to your custom Oxygen framework

 Oxygen comes with full support for CALS tables in DITA and Docbook
 documents, meaning that you can easily make selections, resize columns, and invoke
 special actions like insert or delete rows and columns, join, or split cells. You
 can
 also easily customize tables properties such as alignments, separators, and table
 borders. But what if you are editing documents from other vocabularies, containing
 tables with CALS structure? What you can do to obtain the same table editing
 features?

 One option is to use a plugin that adds CALS table editing support along with specific
 table related actions: https://github.com/oxygenxml/web-author-sample-plugins/tree/master/web-author-CALS-table-plugin.

 Another option is to customize your framework configuration:

 Let's suppose that you already created an Oxygen framework for your documents vocabulary
 (if you need further information about frameworks, see The Oxygen SDK (Part 2: Frameworks)). What we want to obtain next is to extract all the
 CALS tables related support from Docbook framework and add it to your custom
 framework. Why Docbook and not DITA as reference? Because the DITA
 customization is based on the "class" attribute checking while the Docbook one is
 more general (element-name oriented).

 	Table rendering

 	copy
 [oXygen_install_dir]\frameworks\docbook\css\cals_table.css
 and
 [oXygen_install_dir]\frameworks\docbook\css\html_cals_table.css
 in your framework css directory

 	 in the Document Type edit dialog,
 Author tab,
 CSS sub-tab, add the
 ${framework}/css/cals_table.css entry to
 the list of the CSSs

 In this way the table will be rendered properly in Author mode and the
 following features will be available:

 	select cells (CTRL+click), rows (click before
 the row), columns (click on top of the row), tables (click in the left-up
 corner of the table)

 	resize table column

 	Create table actionsHere are the table-related actions implemented in
 Docbook that you can implement also in you framework:

 	Expand colspecs

 	Insert/Delete Rows

 	Insert/Delete Columns

 	Table Properties

 	Join cells

 	Split cell

 	Colspecs (both table.collapse.colspec and table.expand.colspec)

 	Copy
 [oXygen_installation_dir]\frameworks\docbook\docbook.jar
 in your framework directory (this jar contains all the table operations
 classes needed to create table actions). In Document
 type edit dialog go to
 Classpath tab and add the docbook.jar from
 your framework directory to the list of paths. In this way you have access
 to all table operations from your framework.

 	 For every table action you have to define a corresponding action in the
 Document type configuration dialog. Here
 are the details: https://www.oxygenxml.com/doc/ug-editor/#topics/the-action-dialog.html. You can look at the corresponding
 Docbook action to see the properties (id, name, icons, the conditions that
 enables it, the specific operation for CALS tables).
 Once you created
 these actions you can add them to the UI.

 	Add table actions to menu, toolbar and contextual menu

 	To add an action to the menu go to Document
 Type configuration dialog,
 Author tab,
 Menu sub-tab, select the action from
 Available actions section and add it to the
 Current action section.

 	 To add an action to the contextual menu go to Document
 Type configuration dialog,
 Author tab, Contextual
 menu sub-tab, select the action from
 Available actions section and add it to the
 Current action section.

 	 To add an action to the toolbar go to Document
 Type configuration dialog,
 Author tab,
 Toolbar sub-tab, select the action from
 Available actions section and add it to the
 Current action section.

 If all goes well, your custom framework which uses the standard CALS table naming
 mechanism will properly handle tables, both for display and for table-related
 operations.

 Convert Code Templates to External Author Actions

 Describes how to bring code templates into a framework as author actions.

 Code templates are code fragments that can be inserted quickly at the current
 editing position. Author actions that are available in the Author mode
 offer a lot more flexibility. For example, you can decide what fragment to insert
 based
 on the current context. If you want to create a new framework or customize an existing framework, then it makes sense to convert code
 templates to author actions. You can then contribute them to the content completion
 window. You can also define the framework using a Framework extension script.

 	
 Create a framework or extend an existing framework using a Framework extension script.

 	
 Go to Options > Preferences > Code Templates and Export the code templates to a file
 named code-templates.xml.

 	
 Create an XSLT file with the following content:

 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="3.0">
 <xsl:output method="xml"/>
 <xsl:template match="//codeTemplateItem[field[@name='contentType']/String/text() = 'text/xml']">
 <xsl:variable name="actionName" select="field[@name='renderString']/String/text()"/>
 <xsl:result-document href="externalAuthorActions/{$actionName}.xml">
 <a:authorAction xmlns:a="http://www.oxygenxml.com/ns/author/external-action"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.oxygenxml.com/ns/author/external-action http://www.oxygenxml.com/ns/author/external-action/authorAction.xsd"
 id="{$actionName}">
 <a:name><xsl:value-of select="$actionName"/></a:name>
 <a:description><xsl:value-of select="field[@name='descriptionString']/String/text()"/></a:description>
 <a:operations>
 <a:operation id="InsertFragmentOperation">
 <a:xpathCondition>true()</a:xpathCondition>
 <a:arguments>
 <a:argument name="fragment">
 <!-- Try parsing the fragment. if it succeeds, we basically unwrap it from the CDATA. -->
 <xsl:try
 select="parse-xml-fragment(field[@name='unparsedInsertString']/String/text())">
 <xsl:catch>
 <!-- Parsing failed. It might have unresolved entities. Keep it in a CDATA. -->
 <xsl:text disable-output-escaping="yes"><![CDATA[</xsl:text>
 <xsl:value-of disable-output-escaping="true" select="field[@name='unparsedInsertString']/String/text()" ></xsl:value-of>
 <xsl:text disable-output-escaping="yes">]]></xsl:text>
 </xsl:catch>
 </xsl:try>
 </a:argument>
 </a:arguments>
 </a:operation>
 </a:operations>
 <a:accessKey/>
 </a:authorAction>
 </xsl:result-document>
 </xsl:template>

 <xsl:template match="text()"/>
</xsl:stylesheet>

 	
 Create an XSLT Transformation scenario and apply
 the XSLT over the code-templates.xml file.

 	
 Go to the directory of code-templates.xml and copy the
 generated externalAuthorActions to the framework directory
 (the directory with the framework extension script).

 	
 Create another XSLT with the following content, then create an XSLT Transformation scenario and apply
 it over the code-templates.xml file.

 <?xml version="1.0" encoding="UTF-8"?>
<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 exclude-result-prefixes="xs"
 version="3.0">
 <xsl:output method="xml" omit-xml-declaration="yes" indent="true"></xsl:output>
 <xsl:output method="xml"/>
 <xsl:template match="/">
 <contentCompletion>
 <authorActions>
 <xsl:apply-templates/>
 </authorActions>
 </contentCompletion>
 </xsl:template>
 <xsl:template match="//codeTemplateItem[field[@name='contentType']/String/text() = 'text/xml']">
 <xsl:variable name="actionName" select="field[@name='renderString']/String/text()"/>

 <addAction id="{$actionName}" inCCWindow="true"/>
 </xsl:template>

 <xsl:template match="text()"/>
</xsl:stylesheet>

 	
 Copy the resulting <contentCompletion> into the Framework extension script root
 element.

 There is a new external author action for each initial code
 template. All actions are contributed to the content completion window.

 Miscellaneous

 Oxygen XML Ecosystem

 The set of Oxygen XML related products has expanded over the years. It is helpful
 to have
 a general understanding of the functionality we offer and what each of these products
 can do. I enjoyed the presentation by George Bina titled Use-cases using the
 Oxygen XML tools at Convex Baltimore 2023. It provided an overview of all our
 products. I am embedding it below for our clients and integrators to also have a general
 understanding of our products' ecosystem.

 Add-ons For Technical Documentation

 Oxygen XML Author has various free and useful add-ons for technical documentation
 writers, including a language model for editing, batch document converter, Git client,
 content fusion connector, feedback comments manager, terminology checker, DITA translation,
 and live tutorials.

 Oxygen XML Author can be enhanced by installing add-ons. There are a large number
 of free
 and useful add-ons for technical documentation writers and we will explore some of
 them.
 Documentation and installation instructions for all Oxygen add-ons can be found here.

 	Oxygen AI Positron Assistant Add-on

 	Use the Oxygen AI Positron service based on ChatGPT to enhance
 your editing experience.

 	Fluenta DITA Translation
 Add-on

 	Create and manage XLiff files from your DITA XML content using the Fluenta libraries.

 	Create translation projects

 	Convert DITA XML to XLiff

 	Convert XLiff to DITA

 	Batch Documents Converter

 	Convert various formats like Word, HTML, Markdown, DocBook, Open API, or
 Confluence into other formats like DITA XML.

 	Git Client add-on

 	Collaborate with your colleagues on a Git project. Comes with support for:

 	Git Staging

 	Settings to validate before commit or before push.

 	Git History

 	Git Branch Manager

 	Content Fusion Connector
 Add-on

 	Create review tasks for collaborators and subject matter experts who can
 later review the tasks in a web browser.

 	Feedback Comments Manager
 Add-on

 	View and manage comments made in the Oxygen WebHelp Feedback forms directly
 in the Oxygen application.

 	Terminology Checker Add-on

 	

 	Define terminology rules specific for your application to suggest
 replacements for certain combinations of words.

 	Use rules already implemented in Vale syntax.

 	Live Tutorials Add-on

 	Create or explore already available tutorials to learn various Oxygen
 features.

 	DITA Prolog Updater Add-on

 	Automatically update the author name and revision dates in the prolog
 section when saving DITA topics or maps in Oxygen.

 	DITA References View Add-on

 	See the set of outgoing and incoming references for each opened DITA topic,
 including references defined in a relationship table.

 Tips And Tricks

 Oxygen XML Editor has about 18 years of development under its wings. During these years, we
 added lots of functionality and many of our users usually do not know more than 20-30%
 of
 Oxygen's features. So this presentation is intended for people using Oxygen and who
 may want to
 find out more about their tool.

 General Layout - Views and Toolbars:

 	Side views and toolbars can be arranged by drag and drop. Views can be switched to
 the
 auto-hide mode to gain screen size.

 	To hide all side views you can use the main menu Window->Maximize Editing
 Area action. Or you can maximize the editing area by double clicking on the tab of
 an opened XML document.

 	To hide all toolbars you can use the main menu Window->Hide all
 toolbars action.

 	You can also right-click in the toolbar area and use the Configure Toolbars action to
 see what toolbars are available or what toolbars can be removed.

 	The Symbols toolbar is quite interesting if you often want to insert symbols that are
 not on the current keyboard.

 	The entire layout of the views and toolbars can be saved (Window->Export
 Layout) and then shared with others (Window->Load
 Layout).

 Side Views You Probably Never Used

 	The Information view.

 	The Properties view.

 	The Scratch Buffer view.

 Project-related Functionality:

 The Oxygen Project view is the place where you can organize and apply batch changes
 to all
 your resources:

 	Master files support. Enable master files support in the
 project, add your top level XML documents as master files and any structure changes,
 renaming
 or moving files will automatically update all links in the Project. Also works for
 renaming/moving image resources.

 	Store options at project level. Almost all of Oxygen's
 preferences pages can be saved at project level. Once you do that, you can share the
 project.xpr file with somebody else and when they open it, they will also get the
 settings set inside the project. Transformation and validation scenarios can also
 be saved at
 project level.

 	Compare files/folders by selecting them in the Project view, right click and using
 the Compare... popup menu action.

 	Add references to multiple folders from various parts of your current file system
 and
 organize your work in one place.

 	Batch operations: Select a folder in the project, right
 click and use the Transform, Validate,
 Format and Indent, Find/Replace in Files, or
 Spell Check in Files. Or use the XML Refactoring
 action to apply a refactoring stylesheet over all the selected files.

 	Filter files. You can instruct the Project view to hide
 various file types.

 	The Image Preview view will show the image current selected in the Project
 view.

 	Open command prompt in a certain folder (right click on a folder, Show
 in->Terminal.

 	Open the current selected file or folder in the system file browser (right click and
 choose
 Show in->Finder).

 Navigation:

 Actions to find opened files, find files containing a certain content or navigate
 between
 files.

 	In the main Window menu, you can find the Next/Previous Editor
 actions and their shortcuts. Together with the Switch editor tab action, these help you
 navigate between opened XML documents.

 	The Open/Find Resource view (main menu Window->Show
 View) allows you to search for file names, search in file contents, or search for files
 containing comments or change tracking.

 	Right-click the tab of an opened XML document and use the Copy location action. Or
 use the Show in Explorer/Finder action to locate the file.

 	Use the main menu File->Reopen last closed editor action to re-open the last closed
 file.

 	Use the Navigation toolbar to Go back/forward/last modification.

 	

 The main Window menu has actions to tile all opened XML documents and also to enable
 synchronous scrolling in them (useful if you want to look at similar XML documents
 and maybe
 to copy/paste between them).

 Find/Replace Functionality

 The Find/Replace functionality is the bread and butter of any editing application
 and Oxygen
 has lots of functionality in this regard:

 	Find/Replace in Files.

 	Restrict to XPath - If you want to make replacements only in certain parts of the
 XML
 document, the XPath restriction can be used to focus only on certain attributes or
 element
 content.

 	Ignore Whitespaces - You should usually check this checkbox as there is always there
 is a
 possibility what the words you are searching for may be split on multiple lines in
 the XML
 content.

 	The Find menu → Find Next/Previous actions allow you to find the next/previous
 occurrence of the current selected word(s). Or you can use the Find All action to find
 and highlight all occurrences of a word or a sequence of words.

 	The Find menu → Find all Elements action shows a dialog box allowing you to
 find elements or attributes containing a sequence of words.

 	The Find menu → Quick find toolbar is a compact toolbar giving you access to
 search functionality.

 	The XPath toolbar allows you to use XPath expressions (i.e.
 //comment()[contains(., 'TODO')]) to search the current topic or a set of
 topics for elements, attributes, or comments matching a set of conditions.

 Text Editing:

 	You can use the mouse wheel or the Ctrl + and Ctrl - shortcuts to increase or
 decrease the font in the current opened XML document.

 	The Preferences->Editor / Edit Modes / Text page allows you to wrap the visual line
 and show a print margin.

 	

 Code templates can be used in order to define small
 code snippets which are often inserted. Editor variables can be used inside those code templates and they
 will get expanded on insertion. Various useful editor variables:

 	${author.name}

 	${selection}

 	${ask('Author Name', generic, 'John Doe')}

 	${xpath_eval(upper-case(substring('${cfn}', 1, 4)))}

 Code templates can also be saved at project level or exported in order to share them
 with
 others. You can read more about the contexts in which editor variables can appear
 in this blog
 post: All About Editor Variables.

 	Triple click an element tag to select the entire element.

 	Various navigation shortcuts: Go after next tag. Select
 parent. Use the top level breadcrump.

 	Move lines up and down (Alt-Up/Down).

 	Click line number to select the entire line.

 	Go to line/column (main menu Find->Go to...).

 	Open file at cursor on references to navigate to referenced file or create new file
 (Ctrl-ENTER).

 	Bookmarks (main menu Edit->Bookmarks).

 	Quick find filter for side views (Outline, Entities, Transformation Scenarios).

 	Drag/drop resources from a file browser or copy/paste to create links to the resources.

 	Remove results of XPath execution.

 	Use contextual menu to:

 	Apply base 64/32 encoding or decoding to various parts of the XML document. (for example
 insert base 64 encoded images using the data:image/png;base64, protocol.

 	Escape/unescape selection.

 	Toggle comment.

 	Indent selection.

 	Split editor (main menu Window->Split actions) to copy paste between different parts
 of the XML document.

 	Open an XML document in the Text editing mode, right click, choose Go to
 definition to open the DTD, XML Schema or RelaxNG Schema at the precise location where
 that XML element is defined.

 Huge File Editing

 Huge XML and Text documents (Gigabytes) can be opened and edited in the application.

 Grid editing mode:

 	The Grid editing mode is useful for looking at XML documents exported
 from data bases.

 	You can use this mode to sort tables or to copy table data to Excel spreadsheets.

 	The JSON editor also has a Grid editing mode.

 Editing in the Author Visual Editing Mode

 	Increase/decrease editor font - Use Ctrl/CMD +/- to increase or decrease the font in
 the current edited document.

 	Inserting elements - Pressing ENTER in the Author visual editing mode will show you
 a list
 with all possible elements that can be inserted. If you choose an invalid element,
 Oxygen will
 find a place for it. You can also add custom actions or code templates to the content
 completion list.

 	Select content then press ENTER to surround the content in a new element.

 	Select start tag of element, press ENTER to rename the element.

 	Select multiple intervals - Press the Ctrl/CMD button when selecting text to select
 multiple text intervals. Once you do that, you can use toolbar actions like Bold,
 Italic, or Underline or you can use the Edit Profiling Attributes action
 to set profiling attributes on all the selected items.

 	In-place attributes editor - Instead of using the Attributes view, you can press
 Alt-Enter to edit attributes for the current element in a small pop-up dialog
 box.

 	Select an entire element - Triple-click inside an element's contents to select the
 entire
 element. After this, you can move the element to a new place.

 	Double-click to select by word, then drag the mouse to select the content word by
 word.

 	Move elements (especially paragraphs, list items) up or down (ALT-UP/DOWN), indent
 or unindent list items (Tab, Shift-Tab).

 	Easily insert lists using framework specific auto correct support. Insert for example
 1. at the beginning of a paragraph, press the Space key and the inserted
 content becomes an ordered list. Or in a DITA topic at the beginning of a paragraph
 type
                     ```java and press space to insert a <codeblock>.

                  
                  
                  	Select content and then use the Toggle comment action (contextual menu
                     Refactoring submenu) to quickly add an XML comment around it.

                  
                  
                  	In the contextual menu the Text submenu contains useful
                     actions to count the number of words in the entire document (or in the selected text),
                     convert
                     the selection to upper, lowercase, or sentence case).

                  
                  
                  	Bookmarks - Click the vertical left side bar in the
                     editing area to add a bookmark. Navigate to that bookmark even after the file has
                     been closed
                     using the Ctrl/CMD + number shortcut.

                  
                  
                  	Collapse other folds - Click a fold triangle in the
                     Author visual editing mode and you can choose to close all other folds, useful when
                     working
                     with multiple sections in the same file.

                  
                  
                  	
                     
                     Code templates - Define small fragments of XML content
                        that can be inserted either by defining a shortcut key or by pressing ENTER in the
                        editing area.

                     
                     

                  
                  
                  	
                     
                     Editor variables - Certain Oxygen-specific macros can
                        be automatically expanded. For example, a code template that inserts the current author
                        name
                        can use this editor
                        variable:
                        <author>${author.name}</author>
or
                        a code template that surrounds the selection inside a <keyword>
                        element:
                        <keyword>${selection}</keyword>
or
                        a code template that first asks the end user for their name and then inserts it in
                        the
                        document:
                        <author>${ask('Author Name', generic, 'John Doe')}</author>
Editor
                        variables can also be used when creating new file
                           templates. You can read more about the contexts in which editor variables can appear
                        in this blog post: All About Editor Variables.

                     
                     

                  
                  
                  	Outline Quick find filter - The Outline view contains a filter that can be used to
                     reduce
                     the number of elements displayed in it (for example, display only the contained topics).

                  
                  
                  	The Author editing mode is best for editing bidirectional text with
                     Arabic or Hebrew content.

                  
                  
                  	Editing MS Word and LibreOffice documents in the Author mode.

                  
                  

               
               

            
            

         
         
         
            Preferences:

            
            
            Oxygen has a lot of global settings that can be configured, I will just list what
               I consider
               to be the most important ones:

            
            
            
               
               	Global - Change application language or show memory
                  status.

               
               
               	Appearance - Change the default color theme in Oxygen
                  (the Graphite theme is quite popular).

               
               
               	Application Layout - impose custom layout or change
                  editor tabs placement.

               
               
               	Menu shortcut keys - You can use this preferences page
                  to assign or to see the shortcut for any action available in Oxygen.

               
               
               	Fonts - This page allows you to change the default fonts
                  used in the application. You can also see what font can be used for a certain set
                  of
                  characters.

               
               
               	Spell check - Customize the spell checker settings, use
                  custom spell check dictionaries.

               
               
               	External tools - Define various command line tools that
                  you can launch from Oxygen.

               
               
               	Editor / Content Completion / Annotations - Disable the
                  tooltips which appear when hovering over various elements (useful if you have a small
                  screen).

               
               
               	Editor / Save - Settings to automatically save, recover
                  content data on computer crash or to check for errors before saving the file.

               
               

            
            

         
         
         
            CSS-based PDF Publishing

            
            
            The embedded Chemistry engine can be used to publish any XML document
               to PDF using CSS to style the published output. There is a new transformation type
               XML to PDF
                  transformation using CSS which can be used for this. The CSS
                  Inspector view can be used to see what CSS styles get applied.

            
            

         
         
         
            Tools

            
            
            The Tools main menu is worth exploring. You can:
               
                  
                  	Invoke XML refactoring actions.

                  
                  
                  	Open the SVG Viewer.

                  
                  
                  	Find various JSON-related tools.

                  
                  

               

            
            

         
         
         
            Import - Convert

            
            
            
               
               	The File menu offers the possibility to import HTML, CSV, Excel files, or database
                  content as XML. 

               
               
               	For some XML frameworks like DITA, TEI, DocBook and XHTML you can use the smart paste functionality.

               
               
               	The Batch convertor add-on allows you to convert multiple
                  HTML, Markdown, Excel files to DITA.

               
               

            
            

         
         
         
            Connectivity

            
            
            Oxygen comes bundled with an SVN client.

            
            
            You can also work with resources directly from WebDav repositories, Exist and various other databases.

            
            
            There are also a couple of add-ons which add extra connectivity: 
               
                  
                  	Git add-on for Oxygen.

                  
                  
                  	CMIS add-on for Oxygen.

                  
                  
                  	BaseX
                        add-on for Oxygen.

                  
                  

               

            
            

         
         
         
            Add-ons

            
            
            In the application main menu you can go to the main menu Help->Install new
                  Add-ons and our official add-ons update site contains a couple of available
               add-ons. There are also other free add-ons provided by the Oxygen team that can be
               installed in
               an Oxygen standalone version. 

            
            
            I will enumerate some of the most popular interesting add-ons below:

            
            
            
               
               	Git add-on. This plugin adds a side view allowing you to do some common Git operations
                  like pull, commit, push (mostly 90% of what a regular Git user would do).

               
               
               	Content Fusion Connector add-on. Collaborate with your
                  peers by sending them links that allow them to give you feedback on your work using
                  a web
                  browser without the need to pre-install anything on their side. 

               
               
               	Batch convertor add-on. Converts multiple HTML,
                  Markdown, Excel files to DITA.

               
               

            
            

         
         
         
            Keeping in Touch

            
            
            
               
               	Oxygen's Help menu allows you to use the Report problem action to contact us
                  directly. 

               
               
               	The Support Tools->Randomize XML Content action allows you to randomize the content
                  of an XML project before sending it to us for tests.

               
               
               	And there are a lot of other ways to get in touch with us or to find various videos
                  or
                  tutorials to read: https://www.oxygenxml.com/technical_support.html.

               
               

            
            

         
         

      
      
      
      
      Checking Terminology with Oxygen XML Editor

      
      
      
         
         In this blog post, I will offer a general overview about the current possibilities
            you have available to impose your own language checking rules when working with Oxygen
            XML
            Editor.

         
         
         
            Built-in spell checker

            
            
            Oxygen comes bundled with the popular Hunspell spell checker and, along with the regular
               bundled dictionaries for English, German, Spanish, and French, it allows you to install
               new
               dictionaries, either for other languages or custom dictionaries (for example, dictionaries
               for medical terms) that you can build separately: https://www.oxygenxml.com/doc/ug-editor/topics/spell-dictionary-Hunspell.html.

            
            
            Aside from the spell checker, Oxygen also has support for Auto-correct and you can add your own Auto-correct pairs to
               Oxygen, but the spell checker is limited to checking individual words.

            
            

         
         
         
            Oxygen Terminology Checker

            
            
            In the main application, you can select Install new add-ons from the
               Help menu, browse the Default update site,
               and install the add-on named Terminology Checker. The terminology
               checker add-on is available for Oxygen version 20.0 or newer.

            
            
            Once the add-on is installed, it will allow you to highlight matched terms (words
               or
               sequences of words) in the Author visual editing mode.

            
            
            First, you need to use the File->New dialog wizard to create a new
               Terminology File, edit that file, and add mappings between matched
               terms and their suggested replacements, as in the following
               example:
               <incorrect-terms>
    ....
    <incorrect-term ignorecase="true">
        <match>virtual assistant</match>
        <suggestion>personal digital assistant</suggestion>
        <message>Prefer 'pda' over 'va'</message>
    </incorrect-term>
   ......
</incorrect-terms>

            

            
            
            Then go to the Preferences->Plugins / Oxygen Terminology Checker
               page and in the Terminology Folder text field, reference that folder
               where your terminology files are located. The incorrect terms that have been previously
               configured should now be highlighted in current editor in Author
               mode.

            
            
            You can right-click the highlights to access various actions that allow you to replace
               each
               individual highlight with suggestions or to apply the same suggestion in multiple
               places in
               the currently open document.[image: ../images/term-checker-sample.png]

            
            

         
         
         
            Commercial alternatives

            
            
            Acrolinx is a very popular commercial tool for checking content for consistency
               and terminology. The plugins that Acrolinx developed for Oxygen standalone, Oxygen
               Eclipse
               plugin, and Oxygen Web Author allow you to run the Acrolinx checker directly from
               inside the
               application.

            
            
            Etteplan HyperSTE is another popular commercial tool for checking content
               and terminology. They also have a plugin for Oxygen standalone.

            
            
            The Congree Language Checker also has an integration for
               Oxygen standalone.

            
            

         
         
         
            AI Positron Add-on

            
            
            The Oxygen AI Positron Assistant Add-on has builtin actions to correct grammar or improve
               readability of selected content. Other custom actions based on company specific rules
               can be
               added.

            
            

         
         
         
            Open-source alternatives

            
            
            LanguageTool is an open-source proof­reading program for English, French, German,
               Polish, and more than 20 other languages . There is an open-source plugin for Oxygen
               available on GitHub.

            
            
            The DITA Open Toolkit terminology checker plugin from Doctales contains Schematron rules to check that various words adhere to the
               terminology dictionaries that are custom built using DITA.

            
            

         
         
         
            Building your own terminology checker

            
            
            The fastest and simplest way to build a simple terminology checker is by using
               Schematron rules. The Doctales plugin is a good example for this. 

            
            
            At some point, as the terminology dictionary keeps growing, you may encounter delays
               and slow-downs when editing the document and validating it using the custom Schematron
               rules. So, an alternative to this is by using our Author
                  SDK to build your own Oxygen plugin, which can use our API to check the content and
               then add highlights. The LanguageTool open-source plugin may be a good starting example for
               this.

            
            

         
         

      
      
      
      
      10 Things I Enjoy About the New Oxygen JSON Editor

      
      
      
         
         We released the Oxygen JSON Editor a couple of months ago as a
            practical tool for web developers and people interested in general in editing,
            validating, or converting JSON documents.

         
         
         In this article, I will list some of the features of Oxygen JSON Editor that I enjoy
            the
            most:
            
               
               	Value for money. The 12 months subscription license is less than 100 USD per year and always gives you
                  access to the latest JSON Editor released version.

               
               
               	Support to create JSON Schemas and to use JSON Schemas to validate JSON
                  instances. There is a great JSON Schema diagram editor
                  that can be used to visually compose JSON schema files. I used this support
                  quite a lot when creating JSON configuration files for the Oxygen AI Positron Assistant add-on.

               
               
               	Built on top of the Oxygen application platform, the JSON Editor offers the
                  regular Oxygen facilities: 
                  
                     
                     	Multi platform application (Windows, Mac, Linux).

                     
                     
                     	Project view.

                     
                     
                     	Find Replace capabilities.

                     
                     
                     	and much more....

                     
                     

                  

               
               
               	As another neat feature of being an Oxygen application, in the Oxygen JSON
                  Editor, you can install useful free add-ons like the Git client-add on, Batch Documents Converter, or the JSON Schema Documentation generator
                     add-on.

               
               
               	All the nifty conversion tools (JSON to YAML, YAML to JSON, XML to JSON)
                  allow you to change between representations in various formats of the same data.
                  For my work, I used, for example, the XML to JSON
                  converter to convert a piece of HTML content representing an unordered list to a
                  JSON object that I further proceeded to load from JavaScript.

               
               
               	When editing a JSON file, the Author visual editing
                  mode allows me to add new lines in values by pressing ENTER, new lines that are
                  escaped automatically to \n when switching to the Text editing
                  mode.

               
               
               	You can run XPath expressions over opened JSON
                  documents using the XPath toolbar.

               
               
               	You can edit much more than JSON documents. This is a
                  web developer editor in disguise, allowing you to edit Markdown, HTML, CSS, Javascript, YAML,
                  and of course JSON.

               
               
               	Support to create, edit, and convert OpenAPI
                  specification documents either in JSON or YAML format.

               
               
               	The Tools menu's Compare
                  utilities allow you to compare a large variety of file formats either file per
                  file or by comparing entire folders.

               
               

            

         
         
         I consider this tool to be an excellent purchase for developers to edit configuration
            files in JSON or Yaml, validate
            configuration files, perform conversions, even for writing small Markdown documentation
            topics.

         
         

      
      
      
      
      Opinions about using Oxygen

      
      
      
         
         
            
            
               
               	https://jaymanalotoibm.wordpress.com/2013/11/27/breathing-oxygen-xml-in-windows-7/

               
               
               	Aaron Thayer https://aaronthayer.wordpress.com/2014/11/02/review-oxygen-xml-editor-powerful-xml-authoring-ditto-for-dita/

               
               
               	Ray Gallon: http://humanistnerd.culturecom.net/2013/04/11/the-humanist-nerd-reviews-oxygen-14-2/http://humanistnerd.culturecom.net/2015/05/15/the-evolution-of-oxygen-17/

               
               
               	Kurt Cagle: https://www.linkedin.com/pulse/praise-oxygen-kurt-cagle?trk=hb_ntf_MEGAPHONE_ARTICLE_POST

               
               
               	Doug Morrison: http://www.jks.co.uk/recommendations/choosingxmleditor.html

               
               

            
            

         
         

      
      
      
      
      A set of rules for providing great tech support

      
      
      
         
         I've been doing technical support for more than 10 years and I feel that I've gathered
            a few
            ideas about what great tech support would be. And doing tech support the right way can
            be great both for product users and for the product developer as it provides lots
            of
            opportunities to further enhance and steer the application.

         
         
         
            
            
               
               	Never say never. Never assume for certain that a feature request will not get
                  implemented. Just register it and wait for feedback from others. I've had so many
                  cases in
                  which requests which initially seemed not worthy of implementation became important
                  features in later versions.

               
               
               	When asked for a solution to a specific problem, give the solution but also provide
                  a
                  sequence of deductive steps you took in order to find the solution. So give them the
                  fish
                  but also discuss about how they can fish for themselves. Help people evolve and you
                  will
                  have less tech support to do.

               
               
               	Try to steer conversations as much as possible from private emails to forums and public
                  user lists. These become repositories of knowledge and you'll avoid explaining the
                  same
                  thing multiple times if there is already a place on the web explaining it.

               
               
               	In order to avoid answering the same question multiple times you have the following
                  constructive options:
                  
                     
                     	Add a topic in the product's User's Manual explaining the problem

                     
                     
                     	Improve the product so that it becomes easier to perform those particular
                        tasks.

                     
                     

                  

               
               
               	Some of our users know more and work more with certain aspects of the application
                  than
                  we do. So when certain work-flows are not appropriate for them, it's important that
                  you
                  listen and possibly change the application accordingly.

               
               
               	Whenever an older behavior is changed in the application, even if you consider that
                  the
                  change is for the better, you will get complaints. And you will need to decide if
                  users
                  just need a time to adjust to the changes or if you've taken the application in the
                  wrong
                  direction.

               
               
               	You may get asked questions which are not particularly related to what the application
                  does. But you might still be able to give your personal opinion and a few useful links
                  to
                  get your client moving in the right direction.

               
               
               	You will gain access to various user samples and work with the application to reproduce
                  certain problems. Various times while working with the application to reproduce a
                  problem
                  you will also notice other behaviors which can be improved as well. Contribute all
                  those
                  side-effect suggestions to your issues list as well.

               
               
               	Make it as easy as possible for people to report problems or to ask questions about
                  the
                  product. For example in Oxygen in the Help menu we have a "Report Problem" action
                  which
                  can be used to quickly report to us any issue which may arise while using the
                  application.

               
               
               	Always try to provide a feasible workaround for a bug or for a lack of
                  functionality.

               
               

            
            

         
         
         If you have more ideas about this, please share them with me.

         
         

      
      
      
      
      A Short Story of Reuse

      
      
      
         
         Give the smartest human in the world a piece of wood and ask him/her to make
            paper. Give them no prior tools and it will take years to come up with
            a decent process which would result in some brown almost usable thick piece of paper.
            

         
         
         This blog post is about reuse, not necessarily reuse of tools and materials,
            but reuse of knowledge. Humanity has evolved not because each generation is smarter
            than the last one but because we learned to reuse and pass knowledge to larger and
            larger audiences and from one generation to another. 

         
         
         Almost all tools that we use today are made up of quite a complex set of components
            which interact with each other. There is no one person in a car assembly factory who
            still
            knows all the pieces and how they come together. 

         
         
         Although using the tool is easier than interacting with all components which make
            it up, you
            still need knowledge to operate it and in this day and age having enough people to
            teach how a
            certain tool can be used is no longer an option. You need to pass knowledge in other
               forms, on paper or in some kind of digital form. So I would define
            technical communication as a means of passing knowledge about using tools to a
            larger audience.

         
         
         Reuse in technical communication can be structured on many levels:
            
               
               	
                  
                  Reuse written content by publishing it to more than one format (PDF, HTML, EPUB,
                     MS Word).

                  
                  
                  It turns out that XML is perfect for publishing content in more than one format.
                     XML is not designed to be consumed directly by end users and its benefit lies
                     directly in this. Your XML content should contain all the data necessary for
                     obtaining all the output formats. So if you are using XML in your technical
                        content, no matter what standard or custom vocabulary, you can
                     safely check the first and most important level of reuse.

                  
                  

               
               
               	
                  
                  Create larger publications from existing ones.

                  
                  
                  Either using an XML standard like XInclude or using standards with their
                     own diverse and powerful methods of reuse like DITA, or by performing custom
                     techniques you can merge XML content in larger publications.

                  
                  

               
               
               	
                  
                  Reuse content written for a certain tool to document the functionality and
                     behavior of a very similar tool.

                  
                  
                  In most mature XML standards like DITA and Docbook there is this
                     implemented concept of profiling which allows you to dynamically filter at publishing
                     time content marked with certain attributes from your original XML project. In
                     this way from the same XML content you can publish documentation for multiple
                     similar tools.

                  
                  

               
               
               	
                  
                  Reuse smaller pieces of common content in more than one publication.

                  
                  
                  Again, using XML standards like XInclude or DITA specific
                     standards like content references you can create and maintain small libraries of
                     reusable XML content, then reuse these components across various
                     publications.

                  
                  

               
               
               	
                  
                  Reuse images and other binary resources in multiple publications.

                  
                  
                  Because XML content does not embed binary resources, these resources are
                     stored separately and thus they can be reused in multiple places.

                  
                  

               
               

            

         
         
         So these are what I consider to be the main selling points for using XML in technical
            documentation. As usual any feedback is welcomed.

         
         

      
      
      
      
      Sharing Application Settings

      
      
         
         There are various ways in the Oxygen standalone version through which a team of writers
            can share and use a set of common settings. Below I will try to list each of these
            possibilities along with useful links:
            
               
               	
                  
                   Save the settings at project level and have all users use the same project
                     "projectName.xpr" file in the Project view when editing. Most of the Oxygen
                     Preference pages have a switch radio button which allows you to pass the settings
                     to
                     Project level and save them in the current project configuration file opened in the
                     Project view. If you commit that Project configuration file to a version control system
                     like GIT or SVN, all writers can open and use that project when working
                     with the repository content. 

                  
                  
                  For example, when we work on the Oxygen User's Manual using our common
                     GitHub repository, we all open in the Project view the
                     "userguide.xpr" project which comes with various fixed options (eg: enabling
                     automatic spell checking):https://github.com/oxygenxml/userguide

                  
                  
                  You can find out more details about sharing projects here: https://www.oxygenxml.com/doc/ug-editor/#topics/sharing-projects.html.

                  
                  

               
               
               	
                  
                  Create and then provide a default options XML document to others. When placed in
                     a specific place in the Oxygen installation or referenced via a specific property
                     in the
                     application startup script, this default options XML document will be used by the
                     application to provide default values for certain settings. You can find out more
                     about
                     how default options work here:https://www.oxygenxml.com/doc/ug-editor/#topics/default-options.html.

                  
                  

               
               
               	Have others manually import an options XML document which you exported
                  from Oxygen:https://www.oxygenxml.com/doc/ug-editor/#topics/import-export-preferences.html.

               
               
               	
                  
                  An Oxygen plugin could use our Java API to impose fixed options when the
                     application starts using the API method:
                     PluginWorkspaceProvider.getPluginWorkspace().setGlobalObjectProperty(key,
                        value). In our Maven-based SDK we have a sample plugin called
                     ImposeOptions which imposes a fixed set of options when the application starts.
                     

                  
                  

               
               

            

         
         
         If you want to share document type configurations (for editing certain XML vocabulary)
            you can find more details in this older blog post: Document Type Extension Sharing.

         
         

      
      
      
      
      Collaboration for Documenting a Software Product using DITA

      
      
      
         
         
            
            
               Besides working on an XML Editor with lots of DITA editing
                  functionality we also use DITA internally for editing the Oxygen User's
                     Guide. 

               
               In this article I will try to give you an overview of our
                  entire workflow as evidence that DITA does work and that it can be used
                  and implemented without expensive solutions. 

               First here's an overview of
               our needs:
               
                  
                  	Offline Help which is available inside the installed application.
                     Oxygen is a multi-platform application so we need to generate both HTML
                        Help (CHM) for Windows and JavaHelp for the Mac
                        OSX and Linux installations. Also for the Oxygen Eclipse
                        Plugin we need to generate Eclipse Help.

                  
                  
                  	Online Help which is available as WebHelp with Feedback on our web site and
                     allows users to add comments to each topic. Those comments can then be used
                     by us to rephrase and improve our documentation.

                  
                  
                  	PDF containing the entire contents of the user's manual. Nowadays
                     most our users use the online WebHelp because it can be used much
                     easier for finding certain topics so in our case at least the PDF
                     output is not popular anymore along users.

                  
                  

               
               We have two main distributions (Standalone and Eclipse plugin)
                  and three main products (Editor, Developer and Author). So
                  we need to produce about six (6) different publications from the same
                  DITA content depending on the shipped product.

               
               And here's an
                  overview of the tools we use:

               

            

         
         
         
            
               Oxygen XML Editor

               This may not
                  come as a surprise but we use our own product to edit DITA content,
                  partly because it's ours and partly because it is a very good tool. During the
                  last couple of years this has been a good opportunity to improve our product
                  based on our own feedback (feedback coming from our technical
                  writers).

               Oxygen is used in two ways:
               
                  
                  	By the technical writers to write DITA content.

                  
                  
                  	By the reviewers to review documented issues by adding comments, making
                     changes with change tracking enabled.

                  
                  

               

            
            
               DITA Open Toolkit + WebHelp plugin

               
               
               We use the DITA Open Toolkit to publish DITA content to the outputs we are
                  interested in. The WebHelp and WebHelp with Feedback outputs are
                  our own additions to the DITA Open Toolkit. But we do not use any special
                  customizations for the other outputs.

               
               

            
            
               Jenkins integration server

               
               
               We have an automated script which builds all the user manual outputs every
                  night.

               
               

            Automated DITA Content Validation There is a script which runs on a
            test server and does three types of checks on the DITA content:
            
               
               	Validate and check for completeness, check for broken links, images, broken web
                  links and so on.

               
               
               	Check and report topics, resources and images which are no longer referenced
                  anywhere.

               
               
               	Spell check the entire DITA content.

               
               

            
            
               Git as a version control system

               
               
               For a long time we used Subversion for version control. Recently we moved
                  our DITA content to a private GitHub repository and we also made a public
                  GitHub repository containing a copy of our user manual's DITA
                  content:https://github.com/oxygenxml/userguide. We use the
                  SourceTree application to work with Git and we are quite happy
                  with it.

               
               

            
            
               Atlassian Jira for workflow

               
               
               We use Atlassian Jira to provide a workflow both for the issues which are related
                  directly to our software product and for the issues which are related
                  exclusively with our user's manual. The JIRA is integrated with both our
                  SVN and GIT repositories so it shows for a certain issue all
                  resources which have been modified to fix it.

               
               
               More details about how with work with DITA can be found in these slides I
                  presented at DITA Europe 2014:https://www.oxygenxml.com/forum/files/usingDitaForOxygenUsersManual.odp.

               
               
               Video demonstration showing how collaboration on a technical publication with
                  Subversion can be achieved: https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html.

               
               

            

         

      
      
      
      
      Collaboration (Teams working on a common XML project)

      
      
         
         Sometimes I get the feeling that there are still many users who collaborate on XML
            projects using shared network drives. We got this question yesterday from one of
            our users:
            
                I am just curious if housing and working off a network drive is possible,
                  and if so, what are the risks involved?

            

            In my opinion having multiple writers
            edit documents from a common shared network location is dangerous because you may
            end up overwriting the content that someone else has been writing on. You also have
            
               no history of who made what modification and no redundancy of content. If
            somehow the network drive fails because of a hardware problem or files get corrupted
            you
            have no copy of your repository to start over. My advice is to start using a free
            and open source version system like Subversion (SVN), CVS or
            GIT. For example Oxygen comes with an embedded SVN Client and
            for writing our user manual which is DITA-based we collaborate using a subversion
               server installed on a Linux machine. We made a small video demonstration showing
            how this collaboration is done:https://www.oxygenxml.com/demo/Collaborative_Authoring_Using_Subversion.html
            The advantage to using version systems is immense:
            
               
               	We know the history of each resource.

               
               
               	We know who made what change.

               
               
               	We can create tags and branches for marking certain versions of the
                  documentation.

               
               
               	Each user has his own local copy of the repository and if the server fails we
                  have the same content duplicated in many other places.

               
               

            Other approaches: Use a WebDav repository. When Oxygen opens an XML
            document from a WebDav repository, it locks the XML document and thus
            prevents other users from saving changes to it while still allowing them to open the
            document. Use a Commercial CMS which in addition to an open source version system
            will bring more workflow related tools and lots of ways to keep your content valid.
            And
            there are quite a few CMSs which have an integration with Oxygen:https://www.oxygenxml.com/partners.html#solutionpartners%28cms%29
            

         
         
         Here's a very nice post by Eliot Kimber about implementing DITA without a CSM:http://drmacros-xml-rants.blogspot.com/#4627052924135934849
            

         
         

      
      
      
      
      Enable massive contributions with oXygen XML Web Author and GitHub

      
      
      
         
         Early in 2016 a new product was added to the oXygen XML set of tools - the oXygen XML Web
               Author. This leverages the power of oXygen XML Author - which basically runs on the
            server side - and provides access to XML authoring from any modern device that supports
            a
            browser capable of rendering HTML5+JavaScript, including desktops and mobile devices,
            like
            your smart phone or tablet!

         
         
         The real power of web-based XML authoring can be seen when it is integrated as part
            of a
            workflow, simplifying it by reducing a large number of steps to a few - and this is
            what the
            GitHub connector provides!

         
         
         If you have XML content on GitHub then you can provide a link that will open a file
            for
            editing in the oXygen XML Web Author and anyone will be able to review or update that
            just by
            accessing the link and saving - a GitHub account is of course required.

         
         
         When you save a file, assuming you do not have commit access on that repository, the
            GitHub
            connector will automatically 
            
               
               	fork the project into your account, if you do not have a fork already

               
               
               	create a new branch from the edited branch

               
               
               	commit your changes on this newly created branch

               
               
               	create a pull request from your newly created branch to the originally edited
                  branch

               
               
               	switch the editor to your branch, so further save operations will just add new commits
                  to your branch, thus updating the pull request with new changes

               
               

            This is a great simplification of the contribution process, a contributor just follows
            a
            link and saves the file, and all the magic happens automatically to create the pull
            request.

         
         
         If the XML source is published then it is possible to include an Edit this page link
            on the published format that will allow immediate access to the editor. An example
            of such
            access is provided for the DITA-OT documentation project. The development branch is published
            at http://www.dita-ot.org/dev/ and every page
            contains at the bottom an Edit this page link that gives immediate access to the DITA
            topic that page is generated from. For example, the https://www.dita-ot.org/dev/ home page has an Edit this page
            button will get you to edit the topic in the WebAuthor.

         
         
         Edit, then save, and a pull request with your changes will be automatically generated
            -
            contribution cannot be easier than this!

         
         
         Next we plan to have the Edit this page option for the oXygen
            documentation, which is also hosted on GitHub at https://github.com/oxygenxml/userguide.

         
         
         Hope you find this useful!

         
         
         George

         
         

      
      
      
      
      All About Editor Variables

      
      
      
         
         In various places in the Oxygen XML Editor application there is support for expanding
            variables. These variables/macros usually take the form ${variableName} and are
            expanded by the application dynamically when necessary. A list with all supported
            editor
            variables can be found in the user's manual: https://www.oxygenxml.com/doc/ug-editor/topics/editor-variables.html. I will enumerate below all major contexts in which
            using such editor variables may prove useful:

         
         
         
            Transformation Scenarios

            
            
            Most transformation scenario types have lists of parameters and fields where you can
               configure the place where the output should be saved. You can use editor variables
               in these places to make the transformation scenario portable and thus to be able to
               share it with your colleagues. Here are some examples:
               
                  
                  
                  	XML with XSLT based transformation scenario types

                  
                  
                  	If you edit such a scenario and go to the Output tab you can
                     specify the Save as field to use editor variables
                     like this ${cfd}/${cfn}.html which will get expanded to
                     use the current XML document folder and file name but with a different
                     extension when the output of the transformation gets saved on disk. You
                     can also use editor variables like ${date()} to save the output
                     file name using the current date:
                     ${cfd}/${cfn}-${date(yyyy-MM-dd)}.html.

                  
                  
                  	The XSLT tab already uses the ${currentFileURL} editor
                     variable in order to be applied on any XML document opened in the editor
                     area. The Parameters list allows you to specify XSLT parameters
                     with values which may contain editor variables which will be expanded by
                     the application before the transformation is run. For example as value
                     for a parameter you can use an ${ask()} editor variable which
                     will end up requesting the value from the end user when the
                     transformation is started: ${ask('New Parameter Value', generic,
                        'default')}.

                  
                  
                  

               
               
                  
                  
                  	ANT based transformation scenario types

                  
                  
                  	In the Parameters tab you can add new parameters which will be
                     passed to the ANT build file. Values for such parameters can also
                     contain editor variables. You can add for example a parameter called
                     currentXMLDocument with value
                     ${pd}/specificFileName.xml if you want a path to a specific
                     XML file in the current XML project to be passed to the ANT build file
                     as a variable. Again you can use ${ask()} editor variable which
                     will end up requesting the value from the end user when the
                     transformation is started.

                  
                  
                  

               
               
                  
                  
                  	DITA Open Toolkit transformation scenario types

                  
                  
                  	DITA Open Toolkit transformation scenarios are based on ANT so the
                     previous tips apply. In addition you can use the ${rootMapFile}
                     related editor variables which gets expanded to the current root map.
                     For example in the Filters tab I can specify the reference to the
                     DITAVAL file like this: ${rootMapDir}/filter.ditaval to
                     refer to the filter relative to the folder where the current root map is
                     published.

                  
                  
                  	You can also extract the root DITA Map file name using the
                     ${xpath_eval()} editor variable:
                     ${xpath_eval(tokenize('${rootMapURL}',
                        '/')[last()])}.

                  
                  
                  

               

            
            

         
         
         
            New File Templates

            
            
            You can create your own new file templates and have them use when the Oxygen XML Editor
               File->New dialog wizard is used to create new documents:
               Sharing New Custom File Templates for a Specific Vocabulary.

            
            
            The content of these new file templates can have inside editor variables which are
               automatically expanded when a new XML document is created. For example a new file
               template like
               this:
               <topic id="topic_${id}">
    <title>${caret}</title>
    <prolog>
        <author>${ask('Author Name?', generic, 'default')}</author>
    </prolog>
    <body>
        <p></p>
    </body>
</topic>
makes
               use of multiple editor variables:
               
                  
                  	The ${id} editor variable expands to an unique short ID value
                     containing alphanumerical characters. You can also use the ${uuid}
                     editor variable to generate a truly unique but longer ID value.

                  
                  
                  	The ${caret} editor variable marks the position where the caret will
                     be placed after the XML document created from the new file template is
                     initially opened.

                  
                  
                  	The ${ask} editor variable will ask the end user to provide the name
                     of the author and will get expanded in the XML content. You can also use
                     ${answer} editor variables to use the same answer to the
                     ${ask} editor variable in multiple places.

                  
                  

               

            
            

         
         
         
            Code Templates

            
            
            Oxygen XML Editor's code templates support allows you to
               define small pieces of XML content which can later be inserted by pressing the
               Ctrl-Space keyboard shortcut (or ENTER in the
               Author visual editing mode). Code templates can also contain editor variables which
               get expanded when the code template is used. Examples:
               
                  
                  	You can use the ${selection} editor variable to surround the current
                     selected content in the main editing area inside the code
                     template:
                     <em>${selection}</em>

                  

                  
                  
                  	The ${caret} editor variable allows you to precisely choose a place
                     for the caret after the code template is
                     inserted:
                     <ph keyref="oxygen"/>${caret}
In
                     the example above the caret will be placed after the inserted element when
                     the code template is chosen.

                  
                  
                  	The ${ask} editor variable will trigger the application to ask for a
                     value to insert in a particular place of the code
                     template:
                     <problem reason="${ask('Reason?', radio, ('lost':'lost';'illegible':'illegible';'omitted':'omitted';), 'lost')}"/>
In
                     the example above when the code template is chosen, the end user will need
                     to choose the reason in a dialog showing a combo box of possible choices and
                     the chosen reason will be expanded in the code template before being
                     inserted in the XML content.

                  
                  

               

            
            

         
         
         
            Custom Author Actions

            
            
            Oxygen XML Editor framework configurations allow defining custom actions for the
               Author visual editing mode and then contributing these actions to framework-specific
               toolbars and menus. An example of implementing such a custom action can be found
               here: Implementing a Custom Author Action to Split a Table.

            
            
            In some of the default operations that you can use in a custom Author action (for
               example in the InsertFragmentOperation) you can use editor variables.

            
            

         
         
         
            External Tools

            
            
            You can run external command line scripts from Oxygen XML Editor by configuring
               external tools in the
               Preferences page. The defined external tools allow using
               editor variables like ${pd} to access the current project folder and the
               editor variables will be automatically expanded before the external tool is
               invoked.

            
            

         
         
         
            Custom Editor Variables

            
            
            You can define your custom editor variables in the application Custom Editor Variables preferences page.
               A custom editor variable can contain as values other editor variables and can be
               used in all places where a predefined editor variable is.

            
            
            You can use Oxygen XML Editor's API to provide custom editor variables and their
               expanded values using custom Java or Javascript code. For example this plugin adds support for a new
               ${clipboard} editor variable.

            
            

         
         

      
      
      
      
      XSLT Training

      	
      
      
         
         Putting together a list of resources (courses, books, training) valuable for learning
            			XSLT:
            
               			
               	Michael Kay's "XSLT 2.0 and XPath 2.0", especially Part I:
                  				Foundations.

               
               			
               	XSLT Frequently Asked Questions maintained by Dave
                  				Pauson.

               
               			
               	XSLT training courses by Liam Quinn.

               
               			
               	XSLT
                     				training by Tomos Hillman.

               
               			
               	An Udemy course by Ken Holman containing also
                  				some free lectures.

               
               			
               	XSLT Training courses by Dimitre Novatchev on PluralSight.

               
               			
               	XSLT consulting by Mulberry Technologies.

               
               			
               	Our Oxygen XML training partners. 

               
               			

            

         
         

      
      
      
      
      Log4Shell - Oxygen XML Vulnerability Analysis FAQ

      
      
      
         
         NIST has announced a vulnerability (CVE-2021-44228 code-named Log4Shell) in the Apache Log4j library. Syncro Soft has released a new
            critical security advisory CVE-2021-44228 and prepared this page containing frequently
            asked questions and answers related to this vulnerability and its impact on our software
            products.

         
         
         In the following days, more vulnerabilities (with far lower impact on Oxygen products)
            were discovered on the Log4j library: CVE-2021-45046, CVE-2021-45105, CVE-2021-44832. 

         
         
         Please subscribe to our Security Advisories mailing list (found on the top of the
            Security Advisories page ), and revisit this page
            periodically to get the latest information.

         
         
         
            
            	How to protect against this vulnerability?
               
                  
                  	Upgrade to the latest version of our products. We have already released new
                     minor bug fix versions for our products. For example, for Oxygen XML
                     Editor/Author/Developer versions 24.0, 23.1, and 22.1.

                  
                  
                  	If you cannot upgrade to the latest version, patch or update the Log4j
                     library.

                  
                  

               

            
            
            	How can I patch or update the Log4j library?
               
                  
                  	If you are using one of these products:
                     
                        
                        	Oxygen XML Editor/Author/Developer standalone installation

                        
                        
                        	Oxygen XML Editor/Author/Developer plugin for Eclipse
                           installation

                        
                        
                        	Oxygen XML Web Author

                        
                        

                     you can use our free tool (https://github.com/oxygenxml/oxygen-log4j-patcher) to upgrade the Log4j 2.x libraries or to remove the
                     problematic JndiLookup class from inside them. 
                     The
                        recommended Oxygen versions to apply this tool on range from 16.1 to
                        22.1 inclusively.

                     

                  
                  
                  	If you are using Oxygen Content Fusion, you can use the Content Fusion Log4j
                     Patcher: https://github.com/oxygenxml/content-fusion-log4j-patcher.

                  
                  
                  	For other scenarios:
                     
                        
                        	Scan your system for occurrences of the log4j-core
                           JAR file.

                        
                        
                        	Stop your running Java application (e.g. Oxygen XML Editor).

                        
                        
                        	Delete the JndiLookup class from those JAR files.
                           For example, use the following command on a Linux system:
                           
                           zip -q -d log4j-core-*.jar org/apache/logging/log4j/core/lookup/JndiLookup.class

                        

                        
                        

                     

                  
                  

               

            
            
            	Am I still vulnerable if I set the -Dlog4j2.formatMsgNoLookups=true
               system property?
               
                  
                  	Although our products do not meet the preconditions for CVE-2021-45046, setting this
                     system property is no longer considered to offer bullet-proof
                     protection.

                  
                  

               

            
            
            	Am I still vulnerable if I set the environment variable:
               LOG4J_FORMAT_MSG_NO_LOOKUPS="true"?
               
                  
                  	Although our products do not meet the preconditions for CVE-2021-45046, setting this
                     environment variable is no longer considered to offer bullet-proof
                     protection.

                  
                  

               

            
            
            	
               
               Are there components that may have this problem used by the application outside
                  of the Oxygen installation folder?

               
               
               
                  
                  	Oxygen add-ons may come bundled with Log4j 2.x libraries. Update all your
                     add-ons to their latest version by using the Help >
                     Check for add-ons updates menu action.

                  
                  
                  	The Oxygen application may have external tools configured in the
                     Preferences > External
                        Tools page. Check that your external tools do not use Java
                     processes that may have this problem.

                  
                  
                  	You may have configured extra JAR libraries used for validation or
                     transformation scenarios. Check that all of these separate libraries do not
                     contain the Log4j 2.x libraries. 

                  
                  
                  	There may be data sources (for example, for connections to eXist-db servers)
                     created in the Preferences > Data
                        Sources page that have references to Log4j 2.x libraries. If
                     this is the case, update your connection libraries to the latest ones
                     provided for the latest server installation.

                  
                  
                  	You may run DITA publishing using an external DITA Open Toolkit publishing
                     engine that has older versions for the bundled Log4j 2.x libraries provided
                     by the Oxygen-specific publishing plugins. Update the Oxygen plugins used by
                     the custom DITA Open Toolkit to the latest versions available on our
                     website.

                  
                  

               
               

            
            
            	I am using the Oxygen SDK and cannot upgrade. How can I upgrade just the Log4j
               library?
               
                  
                  	Make sure that you do not have the version of Log4j hard-coded in your
                     pom.xml file.

                  
                  
                  	You can control the version of Log4j to be included by adding the following
                     configuration in the dependencyManagement section of the
                     pom.xml file of your
                     project:
                     <dependency>
  <groupId>org.apache.logging.log4j</groupId>
  <artifactId>log4j-bom</artifactId>
  <version>2.17.1</version>
  <type>pom</type>
  <scope>import</scope>
</dependency>

                  

                  
                  
                  	To test which version of Log4j your Maven project uses, run: mvn
                        dependency:list -DincludeGroupIds=org.apache.logging.log4j
                        -U.

                  
                  
                  	If you are using the web-author-component artifact, you can
                     use a Maven WAR Overlay to replace the
                     packaged Log4j library distributed with a newer version.

                  
                  

               

            
            
            	Am I still vulnerable if I block all outbound traffic?
               
                  
                  	If you block ALL the outbound traffic, you may be safe, but:
                     
                        
                        	Be sure to block also DNS traffic, as it can exfiltrate data such as
                           environment variables.

                        
                        
                        	Be sure to re-assess which servers are trusted - maybe some trusted
                           servers had the same vulnerability and were exploited.

                        
                        

                     

                  
                  
                  	Regardless, it is a very good idea to restrict outbound traffic from Oxygen
                     tools. This will protect you against various types of vulnerabilities.

                  
                  

               

            
            
            	Am I still vulnerable if I use a new version of Java?
               
                  
                  	The vulnerability is known to exist with the latest versions of Java (e.g. >
                     1.8u191) if you are also using Apache Tomcat or Websphere. If you are not using
                     those servers, you may still be vulnerable, but we are not aware of any
                     exploits.

                  
                  

               

            
            
            	Should I remove the JndiLookup class?
               
                  
                  	Yes. Removing it will remove the vulnerable code. We have high confidence
                     that other problems will not be generated.

                  
                  

               

            
            
            	Should I set firewall rules based on HTTP headers or URLs to block attacks?
               
                  
                  	These kind of rules do not offer full protection. The URLs that exploit the
                     vulnerability can be written in various ways and are not recognized by
                     common WAF rules that you might find.

                  
                  

               

            
            
            	How to test if I am vulnerable?
               
                  
                  	If you did not apply any mitigation, you can assume you are.

                  
                  

               

            
            
            	Should I do anything if the affected server is deployed inside the intranet?
               
                  
                  	Yes. The attack can be triggered from another server that was exploited or
                     by one of the employees when they follow a link in a phishing email.

                  
                  

               

            
            
            	Should I upgrade to the latest version of your products?
               
                  
                  	Yes. New maintenance builds that avoid this vulnerability are available for
                     versions that are in the maintenance period.

                  
                  

               

            
            
            	Is this vulnerability related to Java being insecure?
               
                  
                  	No. It is caused by an open-source component called Log4j that had a
                     vulnerability. This component is widely used in the Java ecosystem.

                  
                  

               

            
            
            	How is Syncro Soft addressing the problem?
               
                  
                  	We patched all our public servers against this vulnerability.

                  
                  
                  	We provided a security advisory with current solutions (https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html) and we produced maintenance builds
                     that remove the vulnerable version of Log4j for all product versions that
                     are under maintenance. We are working on solutions for older versions.

                  
                  
                  	We analyzed and updated our internal servers to make sure they are not
                     vulnerable.

                  
                  
                  	We scanned the logs of the services we use or provide to look for the
                     pattern that triggers the vulnerability.

                  
                  

               

            
            

         
         

      
      
      
         
         Related information

            
            
               
               	https://www.lunasec.io/docs/blog/log4j-zero-day/

               
               	https://msrc-blog.microsoft.com/2021/12/11/microsofts-response-to-cve-2021-44228-apache-log4j2/

               
               	https://www.oxygenxml.com/security/advisory/CVE-2021-44228.html

            

         

         

      
      
      
      Using Oxygen XML Editor in a Web Browser (Experimental)

      
      
      
         
         The JetBrains Projector is a technology for
            rendering Swing applications over the network and is an interesting way to run
            and access these apps remotely. Some of its use cases are listed here: https://jetbrains.github.io/projector-client/mkdocs/latest/ij_user_guide/jetbrains/#use-cases.

         
         
         Since Oxygen XML Editor is a Java Swing-based application, this blog post explains
            how
            Oxygen XML Editor could be accessed remotely and used from a web browser.
            Figure 2. Oxygen XML Editor Running in the Safari Web Browser Using JetBrains
                  Projector
               
               [image: ../images/oxygen-web-browser.png]
               

            

         
         
         To prepare an Oxygen XML Editor installation on the server side for running in a web
            browser:
            
               
               	Download an All Platforms version of the Oxygen XML Editor installation kit
                  (oxygen.tar.gz): https://www.oxygenxml.com/xml_editor/download_oxygenxml_editor.html?os=Other.

               
               
               	Unpack it to the oxygen folder.

               
               
               	Download the Jetbrains projector server and unzip it in the
                  Oxygen installation folder (the folder path should be something like:
                  oxygen/projector-server-1.5.0).

               
               
               	Download the Jetbrains Java 11 runtime enviroment and unpack it
                  to the oxygen/jbr folder.

               
               
               	Create a start-projector-oxygen.bat script in the
                  oxygen installation folder so that it adds the JetBrains libraries
                  to the classpath and runs the JetBrains server giving it the name of the main class
                  as a
                  parameter to run it with the
                  contents:
                  @echo off
SET CP="%~dp0;%~dp0/classes;%~dp0/lib/oxygen-basic-utilities.jar;%~dp0/lib/oxygen.jar;%~dp0/projector-server-1.5.0/lib/*"

%~dp0\jbr\bin\java.exe %OXYGEN_JAVA_OPTIONS% -Dcom.oxygenxml.app.descriptor=ro.sync.exml.EditorFrameDescriptor -cp %CP% -Dorg.jetbrains.projector.server.classToLaunch=ro.sync.exml.Oxygen org.jetbrains.projector.server.ProjectorLauncher %*

               

               
               
               	Run the start-projector-oxygen.bat script, which will start an HTTP
                  server on port 8887 by default.

               
               
               	Connect to the localhost:8887 port from the same computer or from
                  another computer using a web browser.

               
               

            

         
         
         Result: You should be able to use Oxygen XML Editor in a web
            browser and have full access to the server-side resources.

         
         

      
      
      
      
      Oxygen XML Blog 2022 Retrospective

      	
      
      
         
         So here we are at the end of 2022 and I figured it's a good time to go through
            			some of the improvements we made and posts we added in the Oxygen XML Blog. A
            			short summary of our activity on the Oxygen XML Blog can be found below:
            
               				
               					
               	Statistics

               
               					
               	As an overview of the most read articles on the blog, we found out that
                  						articles about conversions from various formats (especially MS Word) to
                  							DITA XML, articles about learning DITA XML, and general
                  							tips and tricks articles were the most read. Also, I think we
                  						provided some good quality content covering these aspects in 2022. In total,
                  						we provided about 30 new articles to the blog in 2022.

               
               				
               				
               					
               	Collaborators

               
               					
               	This year, we had a lot more internal collaborators with contributors to the
                  							Oxygen XML Blog. Our web designers Mihai and Luci
                  						created a new color theme for the blog. My colleagues Cosmin Duna,
                  							George Bina, and Alex Smarandache contributed various
                  						interesting and useful articles to the blog. Our external collaborator
                  							Chris Papademetrious also submitted an article about enhancing
                  						DITA Open Toolkit project files.

               
               				
               				
               					
               	Moving the product forward

               
               					
               	The blog also served as a place to experiment with ideas that were later
                  						incorporated into Oxygen. For example, based on articles written in
                  						the blog, we added to Oxygen the capability to convert OpenAPI
                  						documents to DITA XML or to generate Google Structured Data
                  						content when publishing DITA XML content to WebHelp Responsive
                  						Output.

               
               				
               			

            

         
         		
         We hope you found the articles we added to the Oxygen XML Blog this year useful. If you
            			have ideas about possible future articles that we could add to the blog, we are
            always
            			open to suggestions, or you can also contribute articles yourselves: How You can Contribute to the Oxygen XML Editor Blog.

         
         		
         A more detailed list of contributions to the blog can be found below:

         
         		
         
            Colors and Layout Redesign

            			
            			
            My colleagues Mihai and Luci (who maintain and design our web site) have had
               				time this year to do a full redesign of the Oxygen WebHelp publishing
               				template we are using to publish our blog's DITA XML content to WebHelp.

            
            			
            So thanks to their work the entire layout of the blog looks better now!

            
            			
            We also changed the WebHelp feedback authentication available on each page of the blog
               				to the Oxygen XML organization so that with the same authentication, you can
               				leave us feedback either on the Oxygen Users Guide Web pages or on the
               					Oxygen XML Blog.

            
            		

         
         		
         
            Migrating Word and Unstructured FrameMaker to DITA XML

            			
            			
            Our colleague Cosmin Duna submitted two interesting migration related articles:
               
                  				
                  	Migrating MS Word to DITA using the Batch Documents Converter

                  
                  				
                  	Migrating Unstructured Adobe FrameMaker Content to DITA

                  
                  				

               

            
            		

         
         		
         
            DITA Publishing

            			
            			
            In 2022, I wrote quite a few small articles based on my experiences with various DITA
               				publishing customizations and they are all linked in this overview post: Publishing Customizations.

            
            			
            I also wrote an article about the various ways that we support the DITA Open Toolkit
               				open source engine: Supporting the DITA OT Project as a Commercial Company.

            
            			
            My colleague Alexandru Smarandache submitted his first article about creating learning content for the Google Chatbot
                  				from DITA XML content. 

            
            			
            Our client and friend Chris Papademetrious also submitted an article about enhancing
               				DITA Open Toolkit project files: Preprocessing DITA-OT Project Files.

            
            			
             These articles were also presented at the DITA Open Toolkit Day 2022 along other
               				interesting talks: https://www.oxygenxml.com/events/2022/dita-ot_day.html.

            
            		

         
         		
         
            DITA Perspectives

            			
            			
            Our boss and colleague George Bina contributed an article and a GitHub project with his
               				experiments creating automatic graphs showing the hierarchy of DITA elements in
               the
               				DITA specification: DITA Perspectives.

            
            		

         
         		
         
            Short Clips - DITA Editing

            			
            			
            We started a series of small articles presenting various features of DITA XML editing
               				with Oxygen using small videos:
               
                  				
                  	Short Clips - Insert Image References

                  
                  				
                  	Short Clips - Insert Links

                  
                  				
                  	Short Clips - Reuse Content

                  
                  				

               

            
            		

         
         

      
      
      
      
      Contributors

      
      
      
         
         Everybody can contribute interesting XML and publishing-related articles to the Oxygen
            XML Blog: How You can Contribute to the Oxygen XML Editor Blog. All contributors to
            the Oxygen XML Blog are listed below.

         
         
         
         
            
               List of contributors to the Oxygen XML Blog
               
                  
                  
               
               
                  
                  
                     
                     	Author Name
                     
                     
                     	Details
                     
                     

                  
                  
               
               
                  
                  
                     
                     	Alex Jitianu
                     
                     
                     	Project Manager, DITA/Authoring team. Oxygen XML Editor
                     
                     

                  
                  
                  
                     
                     	Chris Papademetrious
                     
                     
                     	Senior Technical Writer, Synopsys Inc.
                     
                     

                  
                  
                  
                     
                     	Cosmin Duna
                     
                     
                     	Senior Software Developer. Oxygen XML Editor
                     
                     

                  
                  
                  
                     
                     	Cristi Talau
                     
                     
                     	Project Manager, Web Authoring team. Oxygen XML Editor
                     
                     

                  
                  
                  
                     
                     	George Bina
                     
                     
                     	Owner, DITA XML Expert. Oxygen XML Editor
                     
                     

                  
                  
                  
                     
                     	Mihaela Calotescu
                     
                     
                     	Senior software developer, Web Authoring team. Oxygen XML Editor
                     
                     

                  
                  
                  
                     
                     	Radu Coravu
                     
                     
                     	Helping people with XML-related technologies since the start of this
                        century. Oxygen XML Editor
                     
                     

                  
                  
                  
                     
                     	Steven Higgs
                     
                     
                     	Senior Technical Writer. Oxygen XML Editor
                     
                     

                  
                  
                  
                     
                     	Alex Smarandache
                     
                     
                     	Software Developer. Oxygen XML Editor
                     
                     

                  
                  
               

            

         
         

      
      images/Previous16.png





images/chatgpt-xrefs-links.png
Both cross-references and related links can be useful in DITA XML topics to help users
navigate and find relevant information. However, there are some differences between
the two that may make one more appropriate than the other depending on the context.

Cross-references are links within a document that point to another section within the
same document or to another document altogether. They are typically used to
reference specific information that is related to the current topic, such as a definition
or an explanation of a concept that is introduced in the current section.

Related links, on the other hand, are links to external resources that may be useful to
the user in understanding the current topic. These links may point to other documents
or websites that provide additional information on the same topic, or they may point to
related topics that the user may find interesting or helpful.

The choice between cross-references and related links depends on the specific use
case and the goals of your documentation. If you want to help users quickly access
related information within your documentation, cross-references may be more
appropriate. If you want to provide users with additional resources or further reading
on a topic, related links may be more appropriate.

In some cases, you may even want to use both cross-references and related links in
the same topic to provide users with a variety of options for finding information.

Ultimately, the key is to consider the user's needs and goals when deciding which





images/image1.png
Peeling potatoes

1. »Wash the potatoes in luke-warm water. 4

2. »Use the peeler gently to remove the outer layer |t






images/properTocMKDocs.png
Search docs

Home

Introduction

Care and Preparation

Pruning
Garden Preparation
Flowers by Season

Spring Flowers

8 Iris
Use

Snowdrop

Summer Flowers

» Iris

Iris
From Wikipedia, the free encyclopedia.

Iris is a of between 200-300 species of flowering plants with sho
from the Greek word for a rainbow, referring to the wide variety of flow
many species. As well as being the scientific name, iris is also very wide
for one thing, it refers to all Iris species, but some plants called thus bel
genera. In North America, a common name for irises is flags, while the «
known as junos, particularly in horticulture.






images/conversionDialog.PNG
8 HTMLto DITA

Input fes:
o omers\Basic HTML owers Viowers.htm

s e
-

\fowers\Basic HTMLfiowersloutput

[ 0pen the converted fies.

[ Create DITA maps from HTML documents containing multiple headings

[ Ignore HTML div’ elements.

@






images/shorts-image-dnd.mp4


images/storage.png





images/chatgpt-convert-md.png
Here's the DITA XML equivalent of the Markdown content:

xml ﬂ Copy code

<?xml version= encoding= 7>
<!DOCTYPE >
<topic id= >
<title>Getting Started</title>
<body>
<ol>
<li>
<p>Install the application.</p>
</1i>
<li>
<p>Login.</p>
</1i>





images/shorts-keydef-keyword.mp4


images/Next16.png





images/link.png





images/chatgpt-terminology.png
Both "click a button" and "press a button" are commonly used phrases in technical
documentation and have similar meanings. However, "click a button" is more
commonly used in documentation related to software applications and web interfaces,
while "press a button" is more commonly used in documentation related to hardware
devices such as remote controls, keyboards, or gaming controllers.

Therefore, the choice of using "click a button" or "press a button" depends on the
context of your documentation. If your documentation is related to software
applications or web interfaces, it would be more appropriate to use "click a button."
On the other hand, if your documentation is related to hardware devices, it would be
more appropriate to use "press a button."





images/image12.png





images/chatgpt-sch-image-scale.png
Here's an example ISO Schematron rule that checks if a DITA XML image element

contains a “scale’ attribute:

xml ﬂ Copy code

<schema

<ns

<pattern>
<title>Check for presence of scale attribute on image elements</title>

<rule >
<assert >Image element must have a scale attribute.</assdg
</rule>





images/ai-record18.png





images/brocolli.png





images/feature-branches.png
s





images/schematron_warn_missing_target_text.png
[£> Peer map book B subtopic fink: [X£eE> £ [bookB.subt

Subte

[£>Peer map book B shared topiq

bookB]Book B T
Validation:
© Empty cross-book reference; please run the “Update cross references™
refactoring operation.
1 quick fx(es) avaisble:

+ add the cross-book nk target text

Press F2 for focus






images/snps_centralized_workflow.png





images/previewPlantUML.png
<?xml version="1.0" encoding="UTF-8
<IDOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" “topic.dtd">

testPlantUML">

<topic i
<title>Test diagram</title>

<body>
<>
<foreign outputclass="embed-plant-uml">
@startuml
Alice -> Bob: Authentication Request
Bob --> Alice: Authentication Response
Alice -> Bob: Another authentication Request
Alice &lt;-- Bob: Another authentication Response
@enduml</foreign>
</p>
</body>
</topic>

Test diagram






images/chatbot-save-result-as-csv.png
[[] openinronser/system Appiication
saved e
Otherlocaton

‘OpeninEditor






images/nopanic.png





images/gitlab_merge_graph.png
Git revision

B [0 Begin with the selected commit

|&]rerge branch ‘release/2023.03 into release/2023.06

Merge branch ‘release/2022.12° into release/2623.03

lerge branch ‘release/2022.89° into release/2022.12

...someone’s work in 2023.96...

..someone’s work in 2022.12...

..someone’s work in 2023.03...

..someone’s work in 2022.09...

..someone’s work in 2023.03...

..someone’s work in 2022.12...

...someone’s work in 2023.03

lerge branch ‘release/2023.83" into release/2623.06

Merge branch ‘release/2022.12° into release/2623.03

EEEEEEEEEEEE

lerge branch ‘release/2022.89° into release/2022.12





images/publish.png
é ¢ e 4 @

WebHelp  ePUB HTML CHM Eclipse  Others
Help Help






images/image15.png
<b>

The <b> element is typically used to apply bold highiighting to the content of the element. This element is
part of the highlighting domain. Use this element only when a more semantically appropriate element is not
‘available. For example, for specific items such as GUI controls, use the <uicontzol> element.

New p
o xef (web link)
& image

Bb

© parameterentity
abbreviated-form
apiname
boolean






images/chatbot-enable-beta.png
BETA FEATURES
@ Enable beta features and APIs
Be the first to get access to the newest features and latest APIs. (Full V2-beta API reference)





images/image1.png
Peeling potatoes

1. »Wash the potatoes in luke-warm water. 4

2. »Use the peeler gently to remove the outer layer |t






images/shorts-media-tab-img-ref.mp4


images/ai-var-drop18.png





images/image11.png





images/testcase_refactoring_parameters.png
8 XML Refactoring

Insert element by content model
Insertion configuration parameters

Insertion root element: ‘topic

Eement path inide root element:  prologmetadata/keywords.

Content to nsert: indexterm nden="self >my.-term < indexterm>

Next> Enish






images/term-checker-sample.png
Please start the virtual assistan{ (E) Add File to Review Task

oga o Replace with "personal digital assistant”
BUIlt-In Spe" ChECkE Replace all with "personal digital assistant”

C t all matching highlight
Oxygen comes bundled with tt orrectall matching nightights e regular






images/generated-metrics-evolution.html


  oXygen XML Editor User's Guide - Metrics Evolution



   
     Content reuse


       
       22351447026705389404111755134106156457178808201159223510v18.1.xmlv19.1.xmlv20.1.xmlv21.0.xmlReused wordsReused elementsTotal conrefs149922182303182303206278206278223503283993468934689385293852941858505058165816612361236413

     

      Maps


         
         5101520253035404550v18.1.xmlv19.1.xmlv20.1.xmlv21.0.xmlmapbookmapsubjectScheme383434414145111111111111

      


      Topics


         
         2735468191092136516381911218424572730v18.1.xmlv19.1.xmlv20.1.xmlv21.0.xmltopictaskconceptglossentry18512186218625552555272520418318316516515356454546464293838414141

      

   




images/htmlOutput.PNG
flowers > Basic HTML > flowers






images/convert_xpr_profiling_to_dita_preview.gif
Changes to be performed

© &) C\oxygen_convert_xpr_profiing_to_ditaloxygenxpr

L} C:\oxygen_convert_xpr_profiing_to_dita\oxygen.xpr-profiingall-colors.citaval
C:\oxygen_convert xpr_profiing_to_ditaloxygen.xpr-profiing\subjectdefs-prodA.ditamap
Hoxygen_convert xpr_profing_to_ta\exygen.xpr-profiing lsubjectdefs prodB. dtamzp
\oxygen_convert_xpr_profiing_to_ta\oxygen.spr-profing\subjectdefs rops.ditamap
‘\oxygen_convert_xpr_profiing_to_dita\oxygen.xpr-profiing\subjectdefs-audience. ditamap
‘\oxygen_convert_xpr_profiing_to_dita\oxygen.xpr-profiinglprofiing.itamap

Sckctal || Desclectal § Next Change
— T e |
" <profiingAttrbuteStyle> Pt < N
2 il neme—atirbuteVaue> == H
2 SN flters crectoryeattems = fpattrms = postueFiepatiems=" | 4
= S . ShouiddenFles="false"/>
15 <fid e ToregroundCaor™> s .
2 TR serlzed i soace=Treserve’ o
E Sz . <seriaizableOrderedizp> 7
s <fid e ~backgroundColor™> Pl K
= RIS <Sting>author.profing styles<Strng> s
i S o . <orofiinghtrbutesStie-amay> w
o Eer Lo e JorofingAtirbutestyle-array> 0
= <Sting>"DITA</Strng> sk "
=) <o <eniry> I
2 <fid e "attrbutehiane>
<String>auto.apoly.stles ditaval main les </String> P
2 S Fodlean>true<fBoclean> 15
= S S <fentry> 0
= <fild e —atirbuteGroupName™> e e
e PR <String>custom.refactring.dr </Sting> s
= <field> R
<string>$(od) <lstng> "
» <field rarne ="textDecoration™> (/Ewyf fstring: 5
2 e <eniry> 2
= S = <Sitring>enable.rofect mster.les suppert</Sring> =
& S gbel Fodlean> e <fBoclean> =
2 “Sodeans>fase < Bookean P =
H e = e
» <fidreme=akc>
<Sting>key.author editor.option.pane </Srng> =
v 7 et <Bodlean> e <fBoclean> 7y
= <heid> L
< > < -

]
i
i





images/oxygen-web-browser.png
‘' oo0e@ O v < localhost ¢ [ﬁ + 88

- File Edit Find Project Options Tools Author Document Window Help }vj
DEkBeE Al “e->

i XPath 2.0 ~ | ) vExecute XPath on 'Current File' - | &, EJ, - A‘B/c = a e Se PEE i A

¢ Smart Autocomplete [ L O N 3 ® introduction.dita X = groomingTODO.txt X

m

topic body

Engine: @ OpenAl O Builtin O None
1 <?xml version="1.0' encoding="UTF-8'?> &

2 <IDOCTYPE topic PUBLIC "-//OASIS//DTD DITA Topic//EN" "topic.dtd">«a
3 ¥ <topic id="introduction">«

[_] Auto-Insert best proposal

4 <title>Introduction</title>«

5% <shortdesc>With just a little bit of care and preparation, any flower garden c

6 colored environment.</shortdesc>«

7 ¥ <body>«a |

8 7 <p>With just a little bit of care and preparation, any flower garden can be a

9 colored environment. Flowers can be selected for specific blooming seas
10 shapes. Both annual and <xref keyref="perennial" format="dita">perenr‘j_'\
1 flower gardens can be planted depending on climate and specific needs.}|

12 g/body> «
13 </topic>«
14 .

Reindex

I8 Project ﬂ DITA Map.. 0 Git Staging [® | Smart Aut..

Outline [ L O N 3
SSSS———






images/shorts-link-pdf.mp4


images/softGeneralization3.png
topic

Generalized Intermediary Show tags Default

<ite) Sample topic for soft generalization <)
<body>

<p>|Some highlights: (<ph>|Sample(</ph>| (<ph>|test(</ph>]. [</p>]

<p>|Use the (<ph>|New </ph>] action. </p>]

<p>|This is an [<keyword>] XML </keyword>] element: _<t0pic>_
</body>






images/pullBeforePush.png
4« rBE Git Staging
TV -th-0OF

Working copy:  mobile-phone =
Branch: main
Unstaged files:

[ ] Error

g ton ;
Cannot push. Your current branch is behind. Pull first.
|

=
Q
(0]
o

-_—TTT T 1






images/chatbot-knowledge-file-after-adding.png
OxyKnowledge

rch documents

Document Name

fag-demo ( View Detail )

+ New Document

Knowledge Type Mime Type

FAQ

text/csv

Source/Path

File uploaded

SAVE





images/contrib.png





images/ditaWordSplitHeading.png
Import Word Document: Configuration

Root page title: flowers

Where to import: @ Import as a new page in the current
© Replace "Flowers by Season”

Delete existing children of "Flowers t

Title conflicts: ® Rename imported pages if page nam
© Replace existing pages with importec
© Remove existing pages with the sam

Don't split v

Don't spiit

Level 1 Headings

Level 2 Headings
Level 3 Headings

Split by heading:






images/chatgpt-uicontrol.png
No, the “uicontrol element in DITA XML is specifically intended to be used for user
interface controls, such as buttons, checkboxes, and other interactive elements in
software applications or on websites. The “uicontrol™ element is meant to visually
distinguish these elements from surrounding text and to provide consistent styling

across the document.

Using the “uicontrol element for company names would not be appropriate, as it
does not accurately represent the meaning of the content. Instead, you should use an
appropriate element for company names, such as “orgname*, *companyname®, or
“personname”, depending on the context of your content.

For example, if you are referring to a company name in your documentation, you could
use the "~ companyname™ element to indicate that the text is the name of a company. If
you are referring to a person or group associated with the company, you could use the

“personname” or “orgname’ element, respectively.

Using the correct element for the content will ensure that your documentation is

accurately structured and easy for users to navigate and understand.





images/refactoring_target_text.png
A Preview

x
Changes to be perforned
. Selectal | Deselectal ¥ Next Change 4 Previous Change
PR e ]
1 Spopeer mapbooks sibtopicink <p>Peer map book B subtopicink: "
2 <xref keyref="bookB. subtopic_bookB" type="topic’/></p> <xref ke yr=F="bookB. subtopic_bookB" type ="topic™>Book B Topic Subtopic <?oxy-peertext?><ref></p> 12
13 <p>Peer map book B shared topic link: <p>Peer map book B shared topic link: 13
1 <xrefkeyref="bookB.shared" type ="topic’/></p> <xref keyref="bookB.shared" type="topic">Shared Topic<?oxy-peertext?></xref></p> “

15 <fbody> <Jbody> 15





images/chatbot-create-knowledge.png
OxyKnowledge

No knowledge document has been created yet. Create the first one.

Knowledge documents are articles or FAQs that your Dialogflow agent
can use to generate responses to user queries. Read more here.

Responses @

Execute and respond to the user

Respond to your users with a simple message, or build custom rich
messages for the integrations you support. Learn more

ADD RESPONSE

SAVE





images/shorts-inner-topic-dnd.mp4


images/shorts-crossref-copy-paste.mp4


images/shorts-crossref-dnd.mp4


images/shorts-link-inner-element-toolbar.mp4


images/shorts-crossref-toolbar-insert.mp4


images/shorts-media-tab-img-ref.mp4


images/shorts-image-copy-paste.mp4


images/shorts-image-dnd.mp4


images/shorts-image-toolbar-insert.mp4


images/shorts-link-pdf.mp4


images/shorts-weblink-toolbar-action.mp4


images/shorts-rellink-toolbar-action.mp4


images/shorts-conref-copy-paste.mp4


images/shorts-conref-toolbar-action.mp4


images/shorts-keydef-keyword-insert.mp4


images/shorts-keydef-keyword.mp4


images/shorts-conref-reusable-comps.mp4


images/shorts-weblink-toolbar-action.mp4


images/clone.png
[ ] @ Clone Repository

Repository URL:  |https://github.com/syncro-tech-writer/mobile-phone

Checkout branch: = <Default branch>

Destination path: /Users/raducoravu/mobile-phone B

Cancel





images/image14.png
File Edit Find Project Options Tools DITA Document Window Help

DERBERC ¥ QRk!

Path 2.0 v [ ~Execute XPath on 'Current File'

[ w0

Project @ 8 x  estyleguidedita x

samplesr + I topic body section p ol li b

b ! relaxng ~

3 hematr .

g e Implementing





images/snps_release_branch_workflow.png
b
8
£
E





images/chatbot-add-csv-file.png
Create New Document

Document Name *

fag-demo

Knowledge Type *

FAQ e

Mime Type *

text/csv -

DATA SOURCE
O File on Cloud Storage

gs://bucket-name/object-name

O wrL

http://www.example.com/faq

@ Upload file from your computer

SELECTFILE [EESUIESTER S

Enable Automatic Reload @

CREATE





images/git-flow.png
main






images/micro-commits.png
T 0—0—0—0 -

54'@‘“ x‘)‘f c‘j ‘p\‘f
& ‘,f &
.





images/chatgpt-convert-csv.png
Here's the DITA XML table element for the given CSV content:

xml ﬂ Copy code
<table>
<tgroup ="9">
<colspec = = />
<colspec = = />

<colspec />





images/image2.png
Author Actions

© Topic ID must be equal to file name.

T

+ Set "author-actions" as a topic ID






images/softGeneralization1.png
Generalized Intermediary Show tags Default

<ite>) Sample topic for soft generalization i)

(<p>]Some highlights: (<b>|Sample </b>] (<i>]test(</i>]. (</p>]

(<p>]Use the [<uicontrol>| New [</uicontrol>] action. [</p>]

This is an [<apiname>]XML[</apiname>] element: [<xmle|ement>]<topic>[</xmle|ement>] [</p>]






images/image7.png
Root map






images/ai-quick-fix.gif
o flowers.xml X

topic body section ol

Growing Flowers

Flowers by Season
‘The various climatic changes that occur in cyclic pattern are termed as 'Seasons'.
‘There are four general seasons occurring on Earth - Spring, Summer, Autumn and

Winter.

1§

2. Summer Flowers

Flowers

@7 @ Ordered lists are not allowed, use unordered lists instead.
Ted  Grd

Results
Info._ Description - 1item
flowers.xml, schema “flowers.sch" , scenario "DITA", document type "DITA" (1 item)
© - 150 Schematron] Ordered lists are not allowed, use unordered lists instead.

> B

O x

Al Positron Chat

Send a message to the Al platform.

PR Send

Y





images/htmlToConfluence.png
s v o EE

Attachments (0)
Page History
Restrictions

Analytics

Import documents as Confluence pages

nin¢ Page Information





images/refactoring_setting_type_attributes.png
[ Preview

Changes to be performed

Seectal | | Deselectal

& Next change

0" encoding="UTF-87>
rn:oass:names: teditairmg:topicrng”
tp: elaxng.oojns/structure/1.0°7>
3 <topic d="test1">
<t >Link Test Topic 1 (References)</tite>
5 <body>
°  <p>ouefhiel-Tnk testidta’/></p>.
7 <p>ouefivel=Tnk testi diatesti’/></p>
5 <p><refhver=Tnk testL diastestl/element id"/></p>
s
o
"

<p><xref hef=Tink_testLdita . felement id"/></p>
<p><xref href=Tink_test L ditatest]_subtopic”/></p>
<p><xref href=Tink_test1.dita#test1_subtopic/element i

0" encoding="UTF-87>
<2xmi-model ref=ur mes: teditaimg:topic g™
tp: elaxng.oojns/structure/1.0°7>
<topic d="test1">
<t >Link Test Topic 1 (References)</tite>
<body>
<p><xrefhref=Tnk_testLdita" type="topic'/></p>
<p><xref hef=Tink_test L dita test1” type="topic'/></p>
<p><ref hef=Tink_test1ditatest felement id" ty0e="fg"/></p>
<p><ref hef=Tink_test1dita. felement_d" {ype="fig"/></p>
<p><ref href=Tnk_test L dita test1_subtopc” tpe="topic"/></p>
<p><xref href="ink_test1.dita#test1_subtopic/element_id" type="section”/></p>






images/task-diagram.png
Begin by cutting out all the dead branches.

Find shears

A2
‘ Start from the bottom branch ’

Work your way up

\ 7%
{ Remove all tangled or crossed over branches. This allows air to circulate and reduces bug and fungi infestation. }

\ 7%
‘ Take your time! Work comfortably and do not make shortcuts when cutting stems. Use good quality, sharp tools. ’

\ 7%
Clean up the area. Burn all pest infested branches.






images/chatgpt-translate-rephrase.png
The "Show only keys with closest relative key scope" action has appeared in the
Settings menu on the Media tab. When selected, only the relative keys (those with the
shortest form) should remain in view.





images/resolveConflict.png
Git Staging

P2 M CI :
Working copy: =~ mobile-phone ]
Branch: main

Abort merge

Unstaged files:

mobile-phone /topics/adjustVolume.dita

Open in compare editor

Open
Stage
Open in compare editor
 tg Discard
__ | Resolve Using "Mine"
Resolve Using "Theirs" Show history
. Mark Resolved Show blame

r Restart Merge





images/wordConfluence.png
Earth - Spring, Su
ound throughout

s o o EXIE

Attachments (0)
Page History
Restrictions
Analytics

Import documents as Confluence pages

Page Information
Resolved comments
Link to this Page...

View in Hierarchy

View Source

View Storage Format
Export to PDF

Export to Word

Import Word Document

Slack Notifications

Copy
Move

Delete





images/mermaidDiagram.png
Test Mermaid diagram

[N






images/chatbot-create-agent.png
OxygenBotDemo\

DEFAULT LANGUAGE @ DEFAULT TIME ZONE
English —en A (GMT+2:00) Europe/Kaliningrad
Primary language for your agent. Other languages can be added later. Date and time requests are resolved using this timezone if not

provided in the API requests.
GOOGLE PROJECT

Create a new Google project

Enables Cloud functions, Actions on Google and permissions management

AGENT TYPE
I Setas Mega Agent

Combine multiple Dialogflow agents (i.e. sub agents) into a single agent (i.e. mega agent)





images/prolog-display.png
Frequently Asked Questions

Radu Coravu
29 Mar 2022

Read time: 2 minute(s)

v How do | register to receive notifications for new blog posts?






images/reuse.png





images/image6.png
Root map 1

Root map 2





images/image10.png





images/shorts-crossref-dnd.mp4


images/shorts-conref-reusable-comps.mp4


images/shorts-crossref-copy-paste.mp4


images/softGeneralization2.png
topic

Generalized Intermediary Show tags Default

<ite>) Sample topic for soft generalization i)

Some highlights: (<b>]Sample </b>] (<i>]sest(</i>]. [</p>)
(<p>] Use the <uicontrol>|New </uicontrol>] action. </p>]
(<p>) This is an (<apiname> XML (</apiname>] element: (<markupname> | <topic>(</markupname>] (</p>)






images/image8.png
B-BREA SRR

v - e
RoOE map: | <Curment mags=

* mobiePhaneX1000.ditamap % -

- Synoro KL000 phane user quide
(Bmamdesmss = 0o0]
4 [ Gettng started
- iroduction
B orif spochications
L E- odudstys

=EREASED N,

Ragt map: <Current map> =T

ariE

* mobilaPhonaX 2000 ditamap x|
- Synoo X2000 phone user guide
= - prouaame = o)

4 - Gating srted






images/translate.png





images/simpleConflict.png
4 b BE Git Staging
M- RO P

» Working copy:  mobile-phone
Branch: main
Unstaged files:

@ Pull status

A Pull successful with conflicts:

mobile-phone /topics/adjustVolume.dita






images/pandoc_dita_ppt.png
Introduction

With just a little bit of care and preparation, any flower garden
can be a vibrantly colored environment.

With just a little bit of care and preparation, any flower garden
can be a vibrantly colored environment. Flowers can be selected
for specific blooming seasons, colors and shapes. Both annual
and perennial flower gardens can be planted depending on
climate and specific needs.

Flowers by Season






images/cherry-pick.png
 cherry-pick Small fx 1





images/colaboration.png





images/unknownStyles.PNG
Results

nfo

Desarption - 3items.

W Unrecognized Document Tite”style for 'p” Wiord element. You can configure the mapping betieen styles and elements in the Batch Documents Converter preferences page.
W Unrecognized Xeyboard Key" style for " Word element. You can configure the mapping between styles and elements in the Batch Documents Converter preferences page.
W Unrecognized eyboard Key" style for T Word element. You can configure the mapping between styles and elements in the Batch Documents Converter preferences page.

Resource
sample.doox

‘sample.doox
sample.doox

System D
C:\Users\cosmin_duna Desktopsample docx

C:\Users\cosmin_duna Desktopsample.docx
C:\Users\cosmin_duna Desktopsample docx





images/output.PNG
DITA Maps Manager G 8 x ewsdta x
DE-Bk-BOAs BRE® by r

Context: <Curentmap> U -
« flowersditamap X “rm
- Flowers ;
N Iris
4 B coreandpreparation
B3 - Pruning From Wikipedia, the free encyclopedia.

[ - Garden Preparation

4 ) Flowersby Season Tris is a » @ gemus ¢ of between 200-300 species of flowering plants with showy flowers. It takes its name from the Greek word for a

. Baaw-::vm rainbow, referring to the wide variety of flower colors found among the many species. As well as being the scientific name, iisis also.
- - very widely used as a common name; for one thing, i refers to all Irs species, but some plants called thus belong to closely related
s Q,aqm, genera. In North America, a common name for irises is >flags, while the subgenus P Scorpiris ¢ is widely known as Pjunos <,
- gens ‘particularly in horticulture.
- perenmial

E) - copyrioht

b [fris_sanguinea] 44






images/chatgpt-rephrase-ms-styleguide.png
The following is a rephrased version of the content in third person to adhere to the
Microsoft Style Guide:

The "Show only keys with closest relative key scope" action was added to the Settings
dropdown menu on the Media tab, located in the DITA Reusable Components [ Keys
tab.

Both actions' states are synchronized. If the user checks the "Show only keys with
closest relative key scope" action in the Keys tab, it will also be checked automatically
in the Media tab.





images/image15.png
<b>

The <b> element is typically used to apply bold highiighting to the content of the element. This element is
part of the highlighting domain. Use this element only when a more semantically appropriate element is not
‘available. For example, for specific items such as GUI controls, use the <uicontzol> element.

New p
o xef (web link)
& image

Bb

© parameterentity
abbreviated-form
apiname
boolean






images/quote.PNG
Paragraph

My heading |  Normal

“Thigs my quote”

No Spacing

Styles

Heading 1

Heading 2

5





images/sampleGraphBlog.html

		The Oxygen XML Blog as a Graph


		

		
	

images/docworkflow.png
ED





images/validation-report-gh-actions.png
validate-check-completeness summary

Validate and check for completenss Results

Incident

Severity: error
Description: Attribute value "b_wqgb_ fbc_d1c" of type NMTOKEN must be a name token.

Location: topics/10_things_i_enjoy_about_the_new_oxygen_json_editor.dita

Incident

Severity: error
Description: File not found: "topics/notexisting.dita".

Location: topics/10_things_i_enjoy_about_the_new_oxygen_json_editor.dita

Job summary generated at run-time






images/shorts-keydef-keyword-insert.mp4


images/ai-fav-drop18.png





images/shorts-rellink-toolbar-action.mp4


images/shorts-image-toolbar-insert.mp4


images/showing_API_values.png
[ Peer map book B subtopic fink: [X£eE> 2 [bookB. subtopic_bookBIBook B Topic Subtopic 2] {aref]

[2> Peer map book B shared topic lin] Validation: Jas]
© getkeyRefAbsoluteReference (bookB. subtopic_bookB) ==
file:/C:/resolving_refs_refactoring/bookBtopicB. dita #topicB-subtopi
© getkeyRefInfo (bookB.subtopic_bookB) == PEER_MAP_KEY_HREF
Press 2 for focus






images/structuredDataFAQ.png
This tool provides a preview of results in

Google Search. Best viewed on mobile
devices. Learn more.

& https://support.google.com > answer

Frequently Asked Questions

How do | register to receive notifications for new
blog posts? Each blog HTML page has at the end a
form in which you can fill your email address if...

How do | register to receive notifications for new o
blog posts?

Can | contribute articles to the Oxygen XML
Blog?





images/ai-chat.png
 named-user-ficenses.dita X
topebody b

References nmap: [10f2)

Named-User Licenses

Metadata
Keyword
(Named-User licenses)

A PNamed User Licensed can be used by a single P Named User4
on one or more computers. Named-user licenses are not transferable

=] 2 severticessorsicon -
Content Generation
New DA Tope Contrue iy Er
IndexTerns
Rewrte
CorectGrammar Irerove Resdbity oo e o
oz Janttens
Overvien
s Quesons Geneate Questions Sommarae
Reodsbity
Translation
e Frenh Geman
ppese
Harketng
[ Narketngpost Pansotatesclvion
Fesnesadvantges sercis

AL may provide naccurate nformaton,

18 Proct B} OITA s Honeger | G AL Positron Assistant

g

Generate answers t questons you ask based n the
seected text o on the entre document content.

Alpositron
Lo ready o ansier your questions about the gven
fosic.

Whtis a Nmed User License?
A Named-ser Lcerse can be used by 2 sngleNamed s
on one or more computers.

Certainty:tigh

Can aNamed-ser License be bansferred 1o a new user?
o, Named-Jse lcenses are not ransferable 0 3 e
Nermed User

Certainty:tigh

1 order mulbe Named-Uses censes, il receive 3
separate icense ey for each user?

No, i you oder mutle Named Userlcenses, you il
receve asingle bcense key that s good for a pecified
umber of named users.

Certanty: igh
st the responsisity of the user to keep track of e
Nemed Users assgned to cach kcense?
Yes, 1 your respansbity 1o ke backof the naned
sers that each cense s assgner 0.

Certainty:tigh
Insert Prevew Copy

end a message to e Al patform.

The answers are Al generated,

AT Positron Chat | 4’ AT Posion Actvity






images/chatgpt-sch-count-words.png
Here's an example ISO Schematron schema that checks if a DITA short description

element has more than 20 words:

xml ﬂ Copy code

<?xml version="1.0" encoding="UTF-8"7>

<schema xmlns="http://purl.oclc.org/dsdl/schematron” queryBinding="xslt2">
<ns prefix="dita" uri="http://www.dita.org/xsd/dita"/>

<pattern>
<title>Check if short description has more than 20 words</title>

<rule context="dita:shortdesc">
<assert test="count(tokenize(normalize-space(.), '\s+')) &lt;= 20">
Short description should have no more than 20 words.
</assert>
</rule>
</pattern>

</schema> -
‘G Regenerate response






images/customAuthorActionCreated.png
Action X

1D: created.current.date Description: Insert the DITA <created> element with the current
date|
Name: created

Menu access key:

How to translate frameworks

Large icon (24x24): Browse
Small icon (16x16): Browse
Shortcut key: Clear

Enable platform-independent shortcut keys @

Operations
1

Activation XPath: oxyzallows-child-element(" created™)

This XPath expression applies only to elements and attributes. More details

Operation: ro.sync.ecss.extensions.commons.operations.InsertFragmentOperation Choose
Arguments:

Name Description Type Value

fragment The fragment to be inserted Fragment <created date="${date(yyyy-MM-dd)}"/>
insertLocation An XPath expression indicating the insert locat... XPathExpress...

insertPosition The insert position relative to the node deter... Constantlist  Inside as first child

schemaAware Controlling if the insertion is schema aware or... ConstantList  true

goToNextEditablePo... After inserting the fragment, the first editable... ConstantList ~ true

Operation priority: Increase Decrease + X Eg

[[JEvaluate activation XPath expressions even in read-only contexts

@ [k ] Cancel





images/shorts-inner-topic-dnd.mp4


images/publish.png
é ¢ e 4 @

WebHelp  ePUB HTML CHM Eclipse  Others
Help Help






images/ai-stop-record18.png





images/image3.png
¢ @vhittp://www.google.coms following actions i
© Link text is same as @href attribute value. Please remove.
@y Remove redundant link text, text is same as @href value.






images/centralized-wf.png





images/shorts-conref-toolbar-action.mp4


images/commit-message.png
Graph Commit message
Uncommitted changes

.
DCP-745 Add a new topic about how to styl...
DCP-745 Add small detail

Merge branch 'dev' of https://github.com/o...
DCP-745 Remove outdated topic

OPA-640 Added section about Al Refactoring
EXM-53823: Documented new DITA and PD...

—eo—o—e-{©)]

P, B/






images/image16.png
Cooking Book for Pros Publication

Cooking Book Publication
Push Extra Step For

Experts T
<: Resource-only task






images/chatgpt-readability-analysis.png
The DITA XML topic "Sharing Application Settings" has an average readability level
that may be difficult for some readers to understand. Here's a breakdown of the
analysis:

* Flesch-Kincaid Grade Level: 10.1

* Flesch Reading Ease: 60.7

* Gunning Fog Index: 12.2

* Coleman-Liau Index: 11.7

* Automated Readability Index: 10.3

The average grade level for this topic is around 10.1, which means that a high school
student or a person with some college education may understand the content.
However, readers with lower education levels or those who are not familiar with
technical terms may have difficulty comprehending the text.

The Flesch Reading Ease score of 60.7 indicates that the topic is moderately difficult
to read, and readers may need to spend extra time understanding the content. The
Gunning Fog Index of 12.2 suggests that the text is difficult to read and may require a
higher level of education to comprehend. The Coleman-Liau Index of 11.7 indicates
that the text is slightly difficult to read, while the Automated Readability Index of 10.3
suggests that the text is easy to read for individuals with some college education.

Overall, the topic "Sharing Application Settings" has an average readability level that
may be difficult for some readers to understand, especially those who are not familiar
with technical terms.





images/automatically_apply_ditaval.png
profiing

Editor / Edit Modes / Author / Profiling/Conditional Text / Colors and Styles

4 Edtor
4 EdtModes
4 Author [P]
4 Profiing/Conditional Text [P]
Attributes and Condition & You can set here the text colors and styles associated with a profing atirbute value.

< el ‘Document type Attribute Value Example

Tomport the profing colrs and styles defined i a set of DITAVAL fs, cick Tmport | import from DITAVAL..«
from DITAVAL.





images/ai-Chat16.png





images/image9.png





images/testcase_refactoring_preview.png
3 Preview X
Changes to be performed
Seectal | | peselectal & textchange 4 Previous Change
A 1< verson="10" encoding="UTF 87> <parl verson="10" encoding=UTF-87> A
2/ <xml-model ref="um:oosisinames:tcdiair: topc g <l model ref—"umioasisinames tedtamgitopicmg” | 2
> schematypens="http frelaung.rg nsfeructre/ 107> schematypens="httpfrelang.orgfnsfsructure/ 107> 2
2 <topic 6="topic™> <topic 6="topic™> B
4 <ute>y Topic<ute> <title>My Topic</ite> i
5 <proog> <prolog> 5
o <author>dvispy<Jauthor> <author>dispy </author> o
7 Fdata e ="my-data'l> Fmetadata> 7=
& <fprobog> hepwords> s
s <body> <indexterm>my-term < ndextem> s
0 <paThsis some text. <p> <Keywords> 0
11 <loody> 2> 11
12 <ftopic> data neme—my s> ©
i3 ZJorolog> "
<body> "
<p>This s some text <p> 5
<body> 5
<ftopic> "
e
< < -






images/md-dita-map-dmm.png
® swagger.ditamap X 4 b E
Oxygen Content Fusion APl v4.1-SNAPSHOT

- Oxygen Content Fusion APl v4.1-SNAPSH!
- internal

- Returns statistics for activity found on
- Returns assignable accounts filtered k

- Returns a list (Topic 'returns_assignable

- task

Marks a file as being read by the curt

Marks a file as no longer being read t

Returns the readers of the given file.

Returns the readers of the given files.
Get the content of a file.

Set the content of a file.
makeFileReviewable

List the files from a given folder.
Clears the locks set on files.

Uploads a review task

Return a list pending collaborators





images/webhelp-labels.png
Oxygen XML Blog

DITA 1.3 Branch Filtering - Next Generation of Reuse

Thanks to the hard working the DITA 1.3 standard is quite close to being released. Oxygen

17.1 which will be released probably in September this year will have experimental DITA 1.3 support. This will





images/issueworkflow.png





images/mapping.png
Publish Settings: SettingsHtm

Style Mapping Outputs

- Paragraph Styles
Body
Bullet
CellBody
CellHeading
Chapter
Code
Footnote
Heading
Note
Section
Step
Stept
‘Subsection
Subtitie
TableFootnote
TableTitle
Title
Character Styles
Table Styles
Cross-Reference
Image Settings
General Settings

Use Template: Select

-
= Not applicable for PDF output.

Manage CSS:

2]

Style Preview:

Source

Text

Output

Text

Output Style: [Use Source Style] v

Remove Overrides | Edt Style

(] Exclude from output
(] split into topics based on this style
(@ Map to HTML Tag
Autonumber:

Ognore

(O Convert to List (using CSS autonumbering)

O comerttoText

Save and Close

Save Save As.

Cancel






images/tbl-new-table-action.png
insert table.fixed.attributes Description: ${i18n(insert.table_description)}

:
Name: ‘${i18n(insert.table)}
Menu access key:
How to transiate frameworks
Large icon (24x24): /images/Table24.png || Browse
‘Small icon (16x16): /images/Table16.png 0| | Browse
Shortaut key: [ || gear |
Enable platform-independent shortcut keys (1)
Operations
Activation XPath: oxy:allows-global-element("*", "class", " topic/table *) or
oxy:allows-global-element("*", "class", * topic/simpletable *)
This XPath expression applies only to elements and attributes. More details
Operation: 0.5ync.ecss.extensions.commons. operations. ExecuteMultipleActionsOperation
Arguments:
Name Description Type Value

‘Operation priority:

Increase Decrease +xB

[ Evaluate activation XPath expressions even in read-only contexts

@






images/pull-request.png
s
E





images/xpr_colors.png
Preferences

Editor / Edit Modes / Author / Profiling/Conditional Text / Colors and Styles

4 Edtor To mport the profiing colors and styles defined in 2 set of DITAVAL fies, cick “Import from ‘Import from DITAVAL...
et e
el
L ety e e s s e
Attributes and Condition § | Document type Attrbute Value Example
4 Colors and Styles [P] 4 Defined attributes values.
Attributes DITA® ‘product prodA(AL) Sample text to preview the profiing styles.
s o D
. T - | e
B o i G e
st O
“DITA® props. future. ‘Sample text to preview the profiing styles.
“DITA® props. ‘hide ‘Sample text to preview the profiing styles.
o ewe om0 fususseressmess
DITA® audience: ‘expert ‘Sample text to preview the profiling styles.
DITA® audience: novice: ‘Sample text to preview the profiling styles.

“DrTA® audence ANy Sample text to preview the profiing styles.





images/tbl-change-colsep.png
D change.table.colsep| Description:

Name: Set colsep to "

How to translate frameworks

Large icon (24x24): Browse
‘Smallicon (16x16): Browse
Shortcut key: Clear

Enable platform-independent shortcut keys ()

Operations

Activation XPath: ancestor-or-self:table | ancestor-or-self-simpletable.

This XPath expression applies only to elements and attributes. More detai

Operation: ro.5ync.ecss.extensions.commons. operations. ChangeAttributeOperation Choose

Arguments:

Name Description Type Value

elementLocation An XPath expression indicating the element whose attrib... XPathExpression (ancestor-or-self::table | ancestor-or-self-simpletable)[1]

name ‘The attribute local name. String colsep

namespace ‘The attribute namespace. Leave it empty for no namesp... String

value ‘The attribute value. Set it empty to remove the attribute. ~String 1

removelfEmpty ‘True means that the attribute should be removed if an e... Constantlist  true

editattribute 1 an in-place editor exists for this attribute, it will autom... Constanttist  true

Y

Operation priority: Increase Decrease +XPR

[ Evaluate activation XPath expressions even in read-only contexts.






images/projstruct.png





images/history.png





images/step-tabs.png
v Convert Code Templates to External Author Actions

Describes how to bring code templates into a framework as author actions.

Code templates are code fragments that can be inserted quickly at the current editing position. Author actions that are available in the Author mode offer a lot more
flexibility. For example, you can decide what fragment to insert based on the current context. If you want to create a new framework or customize an existing framework,
then it makes sense to convert code templates to author actions. You can then contribute them to the content completion window. You can also define the framework

using a Framework extension script.

Step1 Step2 Step3 Step4 Step5 Step6 Step7

Create an XSLT file with the following content:

<?xml version="1.0" encoding="UTF-8"7>
<xsl:stylesheet xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"

xmlns:xs="http://www.w3.0rg/2001/XMLSchema"
exclude-result-prefixes="xs"

version="3.0">
<xsl:output method="xml"/>






images/chatgpt-install.png
Sure, here's a small DITA XML task about installing a software application on

Windows:

xml ﬂ Copy code

<?xml version= encoding= 7>
<!DOCTYPE >
<task id= >
<title>Installing a Software Application on Windows</title>
<taskbody>
<context>The following steps assume that you have downloaded the install
<steps>
<step>
<cmd>Double-click the installation file to begin the installation pr





images/codeblock-tabs.png
Code samples

Ruby  Python

require 'rest-client'’

require 'json'

headers = {
'Content-Type' => 'application/octet-stream',
'Accept' => 'application/json',

'Authorization' => 'Bearer {access-token}'





images/wordCodeblock.PNG
O 8
Code Snippet Normal No Spacing. M Editing  Dictate

Styles ® Voice

*-Get-access-to-API-used-to-control - the-Oxygen-editors. 9

*-This-static-access- can-be-used-when-running-the- standalone-or- the-Eclipse-version-of -Oxygen-
from-any-part-of -the - developer"s- code.§

g
*-@return-Returns - the- pluginiorkspace.g

*/9

public-static-Pluginorkspace-getPluginiorkspace() - {9

- -return- (Pluginorkspace)StaticComponentsRegistry. get (StaticComponentKey . PLUGIN_WORKSPACE) ; 9
19





images/image5.png
DITA Content






images/badPractice.PNG
Calibri (Body) v18
My heading | Normal NoSpacing  Heading 1 Heading 2

B I U~ x

Font 5 Paragraph ® Styles 5

Care|and Preparation
When caring for your flower garden you want to feed your plants properly, control pests and





images/image1.png
Peeling potatoes

1. »Wash the potatoes in luke-warm water. 4

2. »Use the peeler gently to remove the outer layer |t






images/shorts-conref-copy-paste.mp4


images/shorts-image-copy-paste.mp4


images/chatbot-intents.png
S ¢

[ Default Fallback Intent

® Default Welcome Intent

® Knowledge OxyKnowledge fag-demo.How do | learn DITA?
® Knowledge.OxyKnowledge.fag-demo.What is Oxygen XML E

® Knowledge OxyKnowledge.fag-demo.What is Oxygen XML?





images/translate-one-project.png
v 7] mobile-phone

vigen

> [ tasks

> [ topics
vigfr

> [ tasks

> [ topics
> 7 images

% mobilePhone_en.ditamap

% mobilePhone_fr.ditamap





images/editing-session-stages.png
Checkout Remote Repository Branch

Edit Content

v

Pull Content From Remote Repository

v
Commit Content

Push Content To Remote Repository






images/chatbot-convert-to-intents.png
fag-demo

CONVERT TO INTENTS

Question

Question:
What is Oxygen XML?
Answer:

Oxygen XML Editor is a great tool.

Question:
What is Oxygen XML Editor?
Answer:

Oxygen XML Editor is a great tool.

Question:
How do | learn DITA?
Answer:

YYou can read the Oxygen user's guide, and the Oxygen XML Blog.

ENABLE

DISABLE

SAVE

CANCEL

Status

@ ENABLED

® ENABLED

@ ENABLED

(¢]





images/translate-separate-projects.png
v [ mobile-phone
> 7 image
- mobilePhone.ditamap
> [ topics
v [ mobile-phone-translations
vl fr
> 7 image

% mobilePhone.ditamap
> [ topics
> ja






images/ditaot_project_file_transformation.png
B preferences

Type fiter text Q (®  Document Type Association
Giabal Discover more framenorks by using add-ons updte stes
b Appearance
Applcation Layout Enabled  Document type Storage  prionty
addons DITAOT Project - Synopsys [extension of: DITA-OT Project]  Extemal  High e
ProjectLevel Settngs oma2x Bemal ol
b | Document YRl pay 1t type X
Document Tenpiz
Encodng
S Name: DITAOT Project-Symopsys
oS vaidator | Desaipton:  Support editng forDITA-OT Prject fles
.
oma
Markdonn Stroge:  Olntemal @ Extemal C:ipobackuplroject_fle_experiments\ramenorks\dta\dita_ot project_synopsys. framework | 5]
Data Sources
o Inital editmode:
L Name: | Pubish DITA-OT Project (o defiverables)
archive
Assocaton rues | Schema | Classpath  Author | Templates
Do Options. parameters | Output
Type iter text
Extemal Tools = Working drectory:  S{cid)
efaut Scenario
Menu Shortaut
ouid rameworkDrbuid_ita, xtended i
e [] PublishDITAOT Project ol delverables) ( 3¢ LD I TE D
openfFrdresay | ] PublhDITAOT Project slct deiverale) Buid targets
Custom Edior va Additonal arqumens:
b Network Comnect
AntHome
XML Structure @ Default:[C:Program Fies\Oxygen XML Edior 24\tooklant]
Messages O custom: =
Java Home
(@ Defauit:  [c:\program fiesloxygen xmi ecitor 24re]
O custom: 2
M Arquments:  Amca0s6m
@ ®
® =






images/googleAnswerSteps.png
This tool provides a preview of results in

Google Search. Best viewed on mobile
devices. Learn more.

& https://support.google.com > answer

Generating Google Structured Data
from your DITA tasks

HTML pages published on the web can contain
metadata specified using the Google Structured
Data specification. Once such metadata exists in ...

1. Create in your DITA project a task topic ... v
2. Inside a WebHelp publishing template fo... v
3. Create the addGoogleStructuredData.xsl... v

Afisati toti cei 3 pasi pentru google.com





images/shorts-crossref-toolbar-insert.mp4


images/splitTableCustomAction.png
splittable

Description: Split Table
Name: Split Table

Large icon (24x24): D
‘Small icon (16x16):

Shortcut key:

[l gear |
Enable platform-independent shortcut keys (1)

This XPath expression applies only to elements and attributes. More d

ro.5ync.ecss.extensions. commons.operations.JSOperation

Description Value

QU
Operation priority: Increase Decrease

[ Evaluate activation XPath expressions even in read-only contexts

@






images/workflow.png
o





images/mkdocs_toc.png
Search docs

Growing Flowers
CONCEPTS
Autumn Flowers
Bulb

Cultivar

Genus

Panicle

Perennial
Pollination

Rhizome

Sepal

Spring Flowers
Summer Flowers

Winter Flowers

» Topics » Flowers » Iris

Iris
From Wikipedia, the free encyclopedia.

Iris is a of between 200-300 species of flowering plants with showy flowers. It takes its name
from the Greek word for a rainbow, referring to the wide variety of flower colors found among the
many species. As well as being the scientific name, iris is also very widely used as a common name;
for one thing, it refers to all Iris species, but some plants called thus belong to closely related
genera. In North America, a common name for irises is flags, while the subgenus Scorpiris is widely
known as junos, particularly in horticulture.






images/xpr_values.png
Preferen

profiing Editor / Edit Modes / Author / Profiling/Conditional Text / Attributes and Condition Sets
4 edtor To mport the profiing atrbutes defined i 2 set o DITAVAL fles and reate profing condton se!5 | [t from DITAVAL...
4 Edtvodes based on these fies, cick Tmport rom DITAVAL",
4 Author[P] Profiling Attrb
4 Profiling/Conditional Text [¢] cope - -
2nd] = DITA® roduct rodA(A1) prodA(A2) prodB rodB(
4 Colors and Styles [P] A e prodA(A1) pr Prod8(81) prod6(82)
DImA® props. future hide

Attrbutes.

prTa= audence expertnovice





images/chatgpt-indexterms.png
Here's an example of a DITA XML prolog element containing index term elements

related to the topic:

php ﬂ Copy code

<prolog>
<metadata>
<keywords>
<indexterm>Sharing Application Settings</indexterm>
<indexterm>0xygen</indexterm>
<indexterm>Project configuration</indexterm>
<indexterm>Default options</indexterm>
<indexterm>Import and export preferences</indexterm>
<indexterm>Java API</indexterm>
</keywords>
</metadata>
</prolog>






images/image13.png





images/Hierarchy.PNG
Contents
Introduction (Heading 1)
Pruning (Heading2)
Garden Preparation (xeading2)

Flowers by Season (eading 1)
Autumn Flowers (Heading2)

Salvia (Heading3)
Species (Heading4)
Characteristics (Heading4)
Glossary (Heading1)
Copyright (Heading1)





images/any-change-branches.png
feature

too






images/chatbot-chat-demo.png
OxygenBotDemo

What is Oxygen XML editor?

Oxygen XML Editor is a great tool.

|Ask something...





images/validate-ai-gh-action.png
@@ -21,7 +21,7 @@
<li>Value for money. The 12 months subscrption license is <xref
href="https://www.oxygenxml.com/json_editor/buy.html" format="html"
scope="external">less than 100 USD</xref> per year and gives you always
| access to the latest JSON Editor released version.</li>
+ access to the latest JSON Editor release version.</li>
<li>Support to create JSON Schemas and to use JSON Schemas to validate JSON
instances. There is a great <b id="b_zgq_pbc_d1c">JSON Schema</b> diagram whi
can be used to visually compose JSON schema files. I used this support quite
@@ -33,7 +33,7 @@
<li>Find Replace capabilities.</1i>
<li>and much more....</li>
</ul></1li>
- <li>As another neat feature of being an Oxygen application, you can install in the
+ <li>As another neat feature of being an Oxygen application, you can install into the
Oxygen JSON Editor free useful add-ons like the <xref
href="https://www.oxygenxml.com/doc/ug-editor/topics/git-addon.html"

P 11 T B | B | P T 1 N L A T T DY P SUR - ok





images/refactoring_preview.png
Changes to be performed

[ <e> Cr\nobackuppreprocessed_ditaot_project_fies project_fies deliverables-fina-A.xml

0 encoding="utf 87>

tps: fww. dita-ot.orgjingproject.mc”
type="appication/relax-ng-compact-syntax”7>

3 <project xmins="ttps:/jwww.ita-ot.orgfproject”>

N

8 <1~ A oniine help - final (POF and HTMLS) —>
5 <deliverable < ~"Gelpdf-book-inal-A">

10 <context e ="context-book1-A/>

11 <outputrveF="faljoh-A/pdf />

12 <publcation cF="pub-pdl-fnal">

13 <param name ="outputFie.base™ value ="booki-A"/>
14 <fpubication>

15 </deiverable>

17 <deliverable 1i="del-pdf 00k2-final-A">
1 <contextidre!
19 <outputrver="fraljoh-A/pdf />

20 <pubcation cref="pub-pdf-fina">
21 <param nane="outputfile.base” value ="book2-A"/>
2 <fpublcation>
2 <fdeliverable>
2
=
=
27 <output heef="finaljoh-A"/>

o % <publcation chef—pub-htnis-fnal />
| < lioernbie

< >

§ Previous Change

<= Rkl ] OF and TS <>

<delverable <~ elpdf-book1-fnal-A">
<context nane=bookL-A™>

input href=". fitafbook L ditamap />

itavalffiter_A.ditaval/>
/ditavalffiag_fnal.itaval/>
- itavalffiter_pdf.ditaval/>

4

:
ELGEEEEE
omi o m

g
B

<Jeontext>
<output vef="fnalfoh-Afpdf />

‘<publcaion tr2nstype=pdf2">

“args.draft” alue ="o"f>
“outputrie base” 1alue=book 147>

838

0 0000 00

<Jpubiication’>

<fdelverable>

<deliverable < ~"delpdf-book2-fnal-A">
<context nane=book2-A™>

Idita/pock?.itamap’ />

itavalffiter_A.ditaval/>
/ditavalffiag_fnal.itaval/>
- itavalffiter_pdf.ditaval/>

0 0000 00

<Jeontext>
<output vef="fnalfoh-Afpdf />
‘<publcaion tr2nstype=pdf2">

‘<param name="args.draft” value="o/>

<param rane ~"outputFe base” v2lue="book2-A'/>

lubiatons

AEELHRUSUNNENNAN
moo

En3






images/shorts-link-inner-element-toolbar.mp4


